Background: Insights into the neurobiological basis of resilience can have important implications for the prevention and treatment of stress-related disorders, especially in populations that are subjected to high-stress environments. Evaluating large-scale resting-state networks (RSNs) can provide information regarding resilient specific brain function which may be useful in understanding resilience. This study aimed to explore functional connectivity patterns specific for (high) resilience in Dutch policemen after exposure to multiple work-related traumatic events. We investigated resting-state functional connectivity (RSFC) of the salience network (SN), limbic network, and the default-mode network (DMN).

Methods: Resting-state functional MRI scans were obtained from trauma-exposed executive personnel of the Dutch police force and non-trauma-exposed recruits from the police academy. Participants were divided into three groups: a resilient group ( = 31; trauma exposure; no psychopathology), a vulnerable group ( = 32; trauma exposure, psychopathology), and a control group ( = 19; no trauma exposure, no psychopathology). RSFC of the three networks of interest was compared between these groups, using an independent component analysis and a dual regression approach.

Results: We found decreased resilience-specific positive RSFC of the salience network with several prefrontal regions. The DMN and limbic network RFSC did not show resilience-specific patterns.

Conclusion: This study shows a differential RSFC specific for resilient police officers. This differential RSFC may be related to a greater capacity for internal-focused thought and interoceptive awareness, allowing more effective higher-order responses to stress in highly resilient individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364835PMC
http://dx.doi.org/10.3389/fnbeh.2022.919327DOI Listing

Publication Analysis

Top Keywords

resting-state functional
12
functional connectivity
12
group trauma
12
trauma exposure
12
exposure psychopathology
12
dutch police
8
police officers
8
rsfc salience
8
salience network
8
limbic network
8

Similar Publications

Background And Purpose: Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.

Methods: This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450).

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Multivariate patterns among multimodal neuroimaging and clinical, cognitive, and daily functioning characteristics in bipolar disorder.

Neuropsychopharmacology

January 2025

Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.

Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.

View Article and Find Full Text PDF

Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr

January 2025

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, China.

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients.

View Article and Find Full Text PDF

Quantifying cognitive potential relies on psychometric measures that do not directly reflect cortical activity. While the relationship between cognitive ability and resting state EEG signal dynamics has been extensively studied in children with below-average cognitive performances, there remains a paucity of research focusing on individuals with normal to above-average cognitive functioning. This study aimed to elucidate the resting EEG dynamics in children aged four to 12 years across normal to above-average cognitive potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!