Olive ( L.) is a highly mycotrophic species that has been introduced and cultivated in China for half a century. The arbuscular mycorrhizal fungi (AMF) is extremely valuable as a kind of biofertilizer to promote the health and vigor of olive plants. However, it is still unclear how native AMF impact growth and mineral nutrients, especially phosphorus absorption in the area where olive trees were introduced in China. In the present study, through a pot experiment, the effects of native AMF on the growth, phosphorus uptake and expression levels of four phosphate transporter genes () of olive plantlets were characterized. We found that (1) typical AMF colonization was observed within the roots of inoculated olive plantlets, and the growth of plantlets was significantly promoted; (2) some indigenous consortia (AMF1 and AMF2) notably promoted the absorption of phosphorus, fertilizers significantly increased the foliar content of nitrogen, and both AMF inoculation and fertilization had no significant effect on the uptake of potassium; and (3) AMF inoculation enhanced the expression of phosphate transporter genes in inoculated olive roots. This work demonstrates the effectiveness of native AMF on the cultivation of robust olive plantlets and highlights the role of AMF in increasing phosphorus uptake. There is great potential in using native AMF consortia as inoculants for the production of healthy and robust olive plantlets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373972 | PMC |
http://dx.doi.org/10.7717/peerj.13813 | DOI Listing |
Front Plant Sci
July 2024
Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy.
Introduction: Olive cultivation, like other evergreen fruit crops worldwide, is limited by the occurrence of frost episodes in different times of the year, mainly in winter or early spring. Some contradictory results are reported about cultivars' response to frost, which depends on the physiological stage of the tissues (acclimated or not acclimated) when the cold or frost episode occurs. This work aimed to implement a user-friendly and reliable lab method for discerning frost tolerance.
View Article and Find Full Text PDFSci Rep
July 2024
Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, 30100, Murcia, Spain.
The agronomic use of compost and biochar as soil amendments may exhibit contrasting results in terms of soil fertility and plant nutrition. The effects of the biennial application of biochar, compost and a blend of compost:biochar (90:10; % dw:dw) on the agronomical performance of an organically managed and well established 25-year-old olive orchard was assessed 5 years after the initial application. The agronomical evaluation was based on the assessment of the soil physical, chemical, and biological characteristics, and the assessment of the soil fertility by both crop production and nutritional status of the orchard, and the bioassay with olive plantlets.
View Article and Find Full Text PDFFront Microbiol
February 2024
Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada.
Fungi colonizing plants are gaining attention because of their ability to promote plant growth and suppress pathogens. While most studies focus on endosymbionts from grasses and legumes, the large and diverse group of ericaceous plants has been much neglected. We recently described one of the very few fungal endophytes promoting the growth of the Ericaceae (American cranberry), notably the isolate EC4.
View Article and Find Full Text PDFSci Rep
December 2023
Facultad de Farmacia, Universidad San Pablo-CEU Universities, Ctra. Boadilla del Monte km 5.3, Boadilla del Monte, 28668, Madrid, Spain.
In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress.
View Article and Find Full Text PDFFront Plant Sci
December 2022
Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy.
CRISPR/Cas9 genome editing is a modern biotechnological approach used to improve plant varieties, modifying only one or a few traits of a specific variety. However, this technology cannot be easily used to improve fruit quality traits in citrus, due to the lack of knowledge of key genes, long juvenile stage, and the difficulty regenerating whole plants of specific varieties. Here, we introduce a genome editing approach with the aim of producing citrus plantlets whose fruits contain both lycopene and anthocyanins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!