The endoplasmic reticulum (ER) is a specialized organelle that participates in multiple cellular functions including protein folding, maturation, trafficking, and degradation to maintain homeostasis. However, hostile conditions in the tumor microenvironment (TME) disturb ER homeostasis. To overcome these conditions, cells activate ER stress response pathways, which are shown to augment the suppressive phenotypes of immune cells; however, the molecular mechanisms underpinning this process remain elusive. Here, we discuss a recent study by Raines et al, that suggests the role of the helper T-cell 2 (TH2) cytokine interleukin-4 (IL-4), and the TME in facilitating a protein kinase RNA-like ER kinase (PERK)-signaling cascade in macrophages, which promotes immunosuppressive M2 macrophage activation and proliferation. Further, the authors showed that PERK signaling promotes both mitochondrial respirations to fulfill cellular energy requirements and signaling through ATF4, which regulate phosphoserine aminotransferase 1 (PSAT1) activity to mediate the serine biosynthesis pathway. These results highlight a previously uncharacterized role for PERK in cellular metabolism and epigenetic modification in M2 macrophages, and thus offers a new therapeutic strategy for overcoming the immunosuppressive effects in the TME.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359065PMC
http://dx.doi.org/10.1097/IN9.0000000000000007DOI Listing

Publication Analysis

Top Keywords

promotes immunosuppressive
8
immunosuppressive macrophage
8
perk promotes
4
macrophage phenotype
4
phenotype metabolic
4
metabolic reprogramming
4
reprogramming epigenetic
4
epigenetic modifications
4
modifications perk-atf4-psat1
4
perk-atf4-psat1 axis
4

Similar Publications

Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy.

Cell Commun Signal

January 2025

Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.

Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.

Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.

View Article and Find Full Text PDF

Hybrid lipid nanoparticles with tumor antigen-primed dendritic cell membranes for post-surgical tumor immunotherapy.

J Control Release

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.

View Article and Find Full Text PDF

Tumor cell-derived N-acetyl-aspartyl-glutamate reshapes the tumor microenvironment to facilitate breast cancer metastasis.

Sci Bull (Beijing)

December 2024

Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Department of Oncology; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China; Jinfeng Laboratory, Chongqing 401329, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Neurotransmitters are increasingly recognized to play important roles in limiting anti-tumor immunity. N-acetyl-aspartyl-glutamate (NAAG) has been extensively studied in neurological disorders; however, its potential role in restricting anti-tumor immunity has not been investigated. Here, we demonstrated that NAAG or its synthetase RimK-like family member B (RIMKLB) significantly disrupted anti-tumor immunity by rewiring the myeloid progenitor differentiation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), which in turn promoted breast cancer growth and metastasis.

View Article and Find Full Text PDF

Background: We report a successful wound treatment of a chronic ulcer with bone exposure using a somehow forgotten technique of creating burr holes into the bone. Most clinics would promote flap surgery to cover wounds with bone exposure, however, in some cases invasive surgery is not mandatory. We bring up an alternative treatment for such cases.

View Article and Find Full Text PDF

[Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:

Article Synopsis
  • BTLA is an inhibitory immune checkpoint that interacts with HVEM to regulate immune balance and maintain immune tolerance on the same cell, while also affecting different immune cells to suppress immune responses.
  • Dysregulation of the BTLA/HVEM interaction can lead to impaired immune cell function, allowing tumor cells to evade immune detection and progress.
  • Research indicates that BTLA and HVEM are often abnormally expressed in various tumors, making them potential targets for future immunotherapy approaches in treating hematologic malignancies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!