Background: Immune dysregulation plays a key role in determining COVID-19 disease severity. We aimed to analyze the T cell activation profile in COVID - 19 cases and its predictive role in disease severity and outcome.
Material & Methods: This was a prospective observational pilot study from a tertiary care COVID-19 hospital. Peripheral blood samples obtained between the fifth and seventh day of COVID-19 illness, were subjected to lymphocyte subset analysis using multicolor flowcytometry using a single tube, 8 antibodies (CD45, CD19, CD3, CD4, CD8, CD38, HLADR, and CD56) analysis. Correlation between lymphocyte subset analysis and clinical profile was determined.
Results: 26 patients including 11 with mild disease and 15 with severe disease were enrolled. The median age was 58 years (range: 33-81), with a male: female ratio of 1.36:1. Significant lymphopenia was observed in the severe group compared to the mild group (p < 0.02). The absolute numbers of CD3+, CD4+, CD8 + T cells, B cells, and NK cells were significantly reduced in the severe group as compared to the mild group (p < 0.05). In patients with severe disease, the proportion of CD8 + and CD4 + T cells were significantly higher than those in patients with mild disease (p = 0.0372). Using ROC analysis, a CD4:8 T cell ratio of ≥ 2.63 and an activated (CD38 + HLA-DR+) CD8 T cell proportion of > 15.85% of the total CD8 T cell population, significantly determined the severe disease category.
Conclusions: Severe COVID-19 is associated with severe lymphopenia, altered CD4/CD8 ratio and markedly increased CD8 T cell activation profile.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-022-01558-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362977 | PMC |
http://dx.doi.org/10.1007/s12288-022-01558-6 | DOI Listing |
Bioconjug Chem
January 2025
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States.
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.
View Article and Find Full Text PDFPLoS One
January 2025
Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, University of Padova, Padova, Italy.
The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFJ Mol Endocrinol
January 2025
L Maletinska, Biochemistry, Czech Academy of Sciences, Praha, Czech Republic.
Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!