Thermal insulation and fire protection are two of the most critical features affecting energy efficiency and safety in built environments. Together with the associated environmental footprint, there is a strong need to consider new insulation materials. Tannin rigid foams have been proposed as viable and sustainable alternatives to expanded polyurethanes, traditionally used in building enveloping. Tannin foams structure result from polymerization with furfuryl alcohol via self-expanding. We further introduce cellulose nanofibrils (CNFs) as a reinforcing agent that eliminates the need for chemical crosslinking during foam formation. CNF forms highly entangled and interconnected nanonetworks, at solid fractions as low as 0.1 wt %, enabling the formation of foams that are . 30% stronger and . 25% lighter compared to those produced with formaldehyde, currently known as one of the best performers in chemically coupling tannin and furfuryl alcohol. Compared to the those chemically crosslinked, our CNF-reinforced tannin foams display higher thermal degradation temperature (peak shifted upward, by 30-50 °C) and fire resistance (40% decrease in mass loss). Furthermore, we demonstrate partially hydrophobized CNF to tailor the foam microstructure and derived physical-mechanical properties. In sum, green and sustainable foams, stronger, lighter, and more resistant to fire are demonstrated compared to those produced by formaldehyde crosslinking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364407PMC
http://dx.doi.org/10.1021/acssuschemeng.2c02678DOI Listing

Publication Analysis

Top Keywords

chemical crosslinking
8
rigid foams
8
tannin foams
8
furfuryl alcohol
8
compared produced
8
produced formaldehyde
8
foams
6
nanocellulose removes
4
removes chemical
4
crosslinking tannin-based
4

Similar Publications

Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.

View Article and Find Full Text PDF

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

Ultra-slow self-similar coarsening of physical fibrillar gels formed by semiflexible polymers.

Soft Matter

March 2025

School of Mathematical, Physical, and Computational Sciences, University of Reading, Reading, RG6 6AX, UK.

Biopolymers tend to form fibrils that self-assemble into open network structures. While permanently crosslinked flexible polymers are relatively well understood, structure-property relationships of open networks and pseudo-gels formed by bundles of biopolymers are still controversial. Here we employ a generic coarse-grained bead-spring chain model incorporating semiflexibility and cohesive nonbonded interactions, that forms physical instead of chemical crosslinks.

View Article and Find Full Text PDF

Recovering bromide ions from wastewater can not only alleviate the shortage of bromine resources but also solve the problem of bromine pollution. However, there is no efficient method for selective extraction of bromide ions from bromine-containing wastewater up to now. In this paper, chitosan was acidified into a gel to extend its molecular chain, modified by quaternary ammonium salt functional groups, and then crosslinked to obtain a new adsorption material.

View Article and Find Full Text PDF

Investigating strategies for creating cross-linked amyloid fibril networks through branching of amyloid growth.

Colloids Surf B Biointerfaces

March 2025

Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark. Electronic address:

Hydrogel biomaterials have been extensively explored for applications in medicine, materials science, and the development of functionalized materials. Traditionally, hydrogels were produced using simple polymers, but advancements over recent decades have enabled the use of biological materials such as proteins, peptides, polysaccharides, and even amyloid fibrils. Among these, amyloid-based hydrogels have demonstrated unique advantages, including enhanced cell adhesion and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!