Modification to axial tracking for mobile magnetic microspheres.

Biophys Rep (N Y)

Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA.

Published: December 2021

Three-dimensional particle tracking is a routine experimental procedure for various biophysical applications including magnetic tweezers. A common method for tracking the axial position of particles involves the analysis of diffraction rings whose pattern depends sensitively on the axial position of the bead relative to the focal plane. To infer the axial position, the observed rings are compared with reference images of a bead at known axial positions. Often the precision or accuracy of these algorithms is measured on immobilized beads over a limited axial range, while many experiments are performed using freely mobile beads. This inconsistency raises the possibility of incorrect estimates of experimental uncertainty. By manipulating magnetic beads in a bidirectional magnetic tweezer setup, we evaluated the error associated with tracking mobile magnetic beads and found that the error of tracking a moving magnetic bead increases by almost an order of magnitude compared to the error of tracking a stationary bead. We found that this additional error can be ameliorated by excluding the center-most region of the diffraction ring pattern from tracking analysis. Evaluation of the limitations of a tracking algorithm is essential for understanding the error associated with a measurement. These findings promise to bring increased resolution to three-dimensional bead tracking of magnetic microspheres.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371438PMC
http://dx.doi.org/10.1016/j.bpr.2021.100031DOI Listing

Publication Analysis

Top Keywords

axial position
12
tracking
9
tracking mobile
8
mobile magnetic
8
magnetic microspheres
8
magnetic beads
8
error associated
8
error tracking
8
magnetic
7
axial
5

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Influence of Axial Rotation Between the Femoral Neck and Ankle Joint on Kinematics in Normal Knees: A Cross-Sectional Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopedic Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo, Tokyo (Dr. Kono, Dr. Taketomi, Dr. Kage, Dr. Inui, and Dr. Tanaka); the Department of Information Systems, Faculty of Engineering, Saitama Institute of Technology, Fukaya, Saitama (Dr. Yamazaki); the Department of Orthopedic Biomaterial Science, Osaka University Graduate School of Medicine, Suita, Osaka (Dr. Tamaki, and Dr. Tomita); the Department of Orthopedic Surgery, Saitama Medical University, Saitama Medical Center, Kawagoe, Saitama (Dr. Inui); and the Department of Health Science, Graduate School of Health Science, Morinomiya University of Medical Sciences, Suminoe, Osaka, Japan (Dr. Tomita).

Background: The effect of axial rotation between the femoral neck and ankle joint (total rotation [TR]) on normal knees is unknown. Therefore, this study aimed to investigate the TR effect on normal knee kinematics.

Methods: Volunteers were divided into groups large (L), intermediate (I), and small (S), using hierarchical cluster analysis based on TR in the standing position.

View Article and Find Full Text PDF

Background And Objectives: Surgical planning is critical to achieve optimal outcome in deep brain stimulation (DBS). The relationship between clinical outcomes and DBS electrode position relative to subthalamic nucleus (STN) is well investigated, but the role of surgical trajectory remains unclear. We sought to determine whether preoperatively planned DBS lead trajectory relates to adequate motor outcome in STN-DBS for Parkinson's disease (PD).

View Article and Find Full Text PDF

Ambivalent partnership of the Drosophila posterior class Hox protein Abdominal-B with Extradenticle and Homothorax.

PLoS Genet

January 2025

Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.

Hox proteins, a sub-group of the homeodomain (HD) transcription factor family, provide positional information for axial patterning in development and evolution. Hox protein functional specificity is reached, at least in part, through interactions with Pbc (Extradenticle (Exd) in Drosophila) and Meis/Prep (Homothorax (Hth) in Drosophila) proteins. Most of our current knowledge of Hox protein specificity stems from the study of anterior and central Hox proteins, identifying the molecular and structural bases for Hox/Pbc/Meis-Prep cooperative action.

View Article and Find Full Text PDF

Purpose: Clinicians monitor scoliosis progression using multiple radiographs during growth. During imaging, arms must be elevated to visualize vertebrae, possibly affecting sagittal alignment. This study aimed to determine the arm position that best represents habitual standing (and possibly allowing hand-based skeletal maturity assessment) to obtain frontal and lateral stereo-radiographs as measured using frontal, sagittal, and transverse angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!