Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concern over the influences of constant addition of emerging anthropogenic chemicals to the environment has become a public issue during the rapid urbanization. Here, we investigated the occurrence of organophosphate esters (OPEs) in soil and corresponding tree bark in a megacity, Western China. Our results showed levels of OPEs in tree bark (1250 ± 573 ng/g dry weight (dw)) were 1-2 orders of magnitude higher than those in soil (40.4 ± 30.8 ng/g dw). Rooster Mountain is a background mountain area, exhibiting significantly lower concentrations of OPEs in soil and tree bark than those in other sites with relatively high population density. This result highlights the effect of human activities on the distribution of OPEs in environmental matrices. Alkyl-OPEs were predominant compounds in soil, whereas halogenated- (Cl-) OPEs were characterized in tree bark. Furthermore, tris(2-chloroethyl) phosphate (TCEP) positively correlated with tris(2-chloroisopropyl) phosphate (TCIPP) in soil (r = 0.43, P < 0.05) while negatively correlated with TCIPP in tree bark (r = 0.31, P < 0.05). The ratios of logarithm concentrations of OPEs in tree bark to those in soil correlated well with logK values of OPEs from 6 to 10, indicating the equilibrium status was achieved between OPE partitioning in soil and in tree bark. Nevertheless, tris (2-butoxyethyl) phosphate (TBEP) and tris(2-ethylhexyl) phosphate (TEHP) with high values of logK deviated from this linear tendency, which was possibly due to the fact that they were subjected to the particle-bound deposition process, leading to partition into the soil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-22444-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!