Purification and characterization of Mtr4 and TRAMP from S. cerevisiae.

Methods Enzymol

Department of Chemistry & Biochemistry, Utah State University, Logan, Utah, United States. Electronic address:

Published: August 2022

The Ski2-like RNA helicase, Mtr4, plays a central role in nuclear RNA surveillance pathways by delivering targeted substrates to the RNA exosome for processing or degradation. RNA target selection is accomplished by a variety of Mtr4-mediated protein complexes. In S. cerevisiae, the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex prepares substrates for exosomal decay through the combined action of polyadenylation and helicase activities. Biophysical and structural studies of Mtr4 and TRAMP require highly purified protein components. Here, we describe robust protocols for obtaining large quantities of pure, active Mtr4 and Trf4-Air2 from S. cerevisiae. The proteins are recombinantly expressed in E. coli and purified using affinity, ion exchange, hydrophobic exchange and size exclusion chromatography. Care is taken to remove nuclease contamination during the prep. Assembly of TRAMP is achieved by combining individually purified Mtr4 and Trf4-Air2. We further describe a strand displacement assay to characterize Mtr4 helicase unwinding activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2022.03.042DOI Listing

Publication Analysis

Top Keywords

mtr4 tramp
8
mtr4 trf4-air2
8
mtr4
6
purification characterization
4
characterization mtr4
4
tramp
4
tramp cerevisiae
4
cerevisiae ski2-like
4
rna
4
ski2-like rna
4

Similar Publications

Article Synopsis
  • The TRAMP complex is crucial for RNA processing and features two key enzymatic activities that involve both polyadenylation and unwinding of RNA.
  • New research using hydrogen-deuterium exchange data reveals insights into how TRAMP assembles and shuffles RNA between its catalytic sites, which are not fully understood.
  • Findings indicate that peripheral RNA-recognition motifs affect TRAMP assembly and that different active-site subunits interact with tRNA in ways that influence RNA transfer between TRAMP components.
View Article and Find Full Text PDF

The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a sub-complex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.

View Article and Find Full Text PDF

Expansion of structure-forming CAG/CTG repetitive sequences is the cause of several neurodegenerative disorders and deletion of repeats is a potential therapeutic strategy. Transcription-associated mechanisms are known to cause CAG repeat instability. In this study, we discovered that Thp2, an RNA export factor and member of the THO (suppressors of transcriptional defects of hpr1Δ by overexpression) complex, and Trf4, a key component of the TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex involved in nuclear RNA polyadenylation and degradation, are necessary to prevent CAG fragility and repeat contractions in a Saccharomyces cerevisiae model system.

View Article and Find Full Text PDF

Purification and characterization of Mtr4 and TRAMP from S. cerevisiae.

Methods Enzymol

August 2022

Department of Chemistry & Biochemistry, Utah State University, Logan, Utah, United States. Electronic address:

The Ski2-like RNA helicase, Mtr4, plays a central role in nuclear RNA surveillance pathways by delivering targeted substrates to the RNA exosome for processing or degradation. RNA target selection is accomplished by a variety of Mtr4-mediated protein complexes. In S.

View Article and Find Full Text PDF

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!