Bulk phase biochemistry of PIF1 and RecQ4 family helicases.

Methods Enzymol

Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, IN, United States. Electronic address:

Published: August 2022

DNA helicases are involved in nearly all facets of genome integrity, and in humans, mutations in helicase-encoding genes are often linked to diseases of genomic instability. Two highly studied and evolutionarily conserved helicase families are the PIF1 and RecQ helicases. Enzymes in these families have known roles in DNA replication, recombination, and repair, as well as telomere maintenance, DNA recombination, and transcription. Although genetics, structural biology, and a variety of other techniques have been used to study these helicases, ensemble analyses of their basic biochemical activities such as DNA binding, ATP hydrolysis, and DNA unwinding have made significant contributions to our understanding of their physiological roles. Here, we present general methods to generate recombinant proteins from both helicase families, as well as standard biochemical assays to investigate their activities on DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382717PMC
http://dx.doi.org/10.1016/bs.mie.2022.03.031DOI Listing

Publication Analysis

Top Keywords

helicase families
8
activities dna
8
dna
6
bulk phase
4
phase biochemistry
4
biochemistry pif1
4
pif1 recq4
4
recq4 family
4
helicases
4
family helicases
4

Similar Publications

Phylogenetic analysis and molecular structure of NS1 proteins of porcine parvovirus 5 isolates from Mexico.

Arch Virol

January 2025

Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Carretera Cuautitlán-Teoloyucan Km 2.5, Cuautitlán Izcalli, 54714, Estado de México, México.

Porcine parvovirus 5 (PPV5) is an unclassified member of the family Parvoviridae with no reported pathogenicity, although it is associated with multisystemic, reproductive, and respiratory diseases. Its open reading frame 1 (ORF1) encodes non-structural protein 1 (NS1), which is predicted to have helicase activity that is essential for viral replication. This protein contains a C-motif with an invariant asparagine residue that forms the core of the enzyme's active site, in conjunction with the Walker A and B motifs.

View Article and Find Full Text PDF

Identification and characterization of multiple novel viruses in fecal samples of cormorants.

Front Vet Sci

January 2025

Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.

Introduction: Cormorants, as protected wild animals by the State Forestry Administration of China, have a broad distribution across China. Previous studies have shown that they can be infected with multiple viruses in the , , , and families. There is limited knowledge about the other viruses that cormorants may carry and infect.

View Article and Find Full Text PDF

Modulation of DAPK1 expression by its alternative splice variant DAPK1-215 in cancer.

J Transl Med

January 2025

Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.

Background: Death-Associated Protein Kinase 1 (DAPK1) family members are calcium/calmodulin-regulated serine/threonine kinases implicated in cell death, normal development, and human diseases. However, the regulation of DAPK1 expression in cancer remains unclear.

Methods: We examined the expression and functional impact of a DAPK1 splice variant, DAPK1-215, in multiple cancer cell lines.

View Article and Find Full Text PDF

DEAD/DEAH-box RNA helicases shape the risk of neurodevelopmental disorders.

Trends Genet

January 2025

Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

The DEAD/DEAH-box family of RNA helicases (RHs) is among the most abundant and conserved in eukaryotes. These proteins catalyze the remodeling of RNAs to regulate their splicing, stability, localization, and translation. Rare genetic variants in DEAD/DEAH-box proteins have recently emerged as being associated with neurodevelopmental disorders (NDDs).

View Article and Find Full Text PDF

Discovery of a DNA methylation profile in individuals with Sifrim-Hitz-Weiss syndrome.

Am J Hum Genet

January 2025

Genetics Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. Electronic address:

Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!