A novel framework for the expedient assessment of flood risk to transportation networks focused on the response of the most critical and vulnerable infrastructure assets, the bridges, is developed, validated and applied. Building upon the recent French guidelines on scour risk (CEREMA, 2019), this paper delivers a thorough methodology, that incorporates three key, risk parameters: (i) the hydrodynamic loading, a hazard component of equal significance to scour, for the assessment of hazard; (ii) the correlation of select scour indicators with a new index relating to flow velocity, a primary measure of the adverse impacts of flow-structure interaction, enabling a more accurate and automated, assessment of bridge susceptibility to scour; (iii) the use of a new, comprehensive indicator, namely the Indicator of Flood Hazard Intensity (IFHI) which incorporates, in a simple yet efficient way, the key parameters controlling the severity of flood impact on bridges, namely flow velocity, floodwater height, flow obstruction, and sediment type. The framework is implemented for the analysis of flood risk in a case study area, considering an inventory of 117 bridges of diverse construction characteristics, which were affected by a major flood that impacted Greece in September 2020. The reliability of the method is validated against an extensive record of inspected and documented bridge damages. Regional scale analysis is facilitated by the adoption of the Multi-Criteria Decision-Making method for flood hazard indexing, considering geomorphological, meteorological, hydrological, and land use/cover data, based on the processing of remotely sensed imagery and openly available geospatial datasets in GIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157976 | DOI Listing |
Environ Manage
January 2025
School of Public Policy and Urban Affairs, Northeastern University, Boston, MA, USA.
Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.
View Article and Find Full Text PDFJ Family Med Prim Care
December 2024
Department of Preventive and Social Medicine, Shaheed Nirmal Mahto Medical College and Hospital, Dhanbad, Jharkhand, India.
Background: Integrated Counselling and Testing Centre (ICTC) diagnose HIV and STIs early, modifies behavior, reduces vulnerability, and data helps in understanding transmission. Despite having low HIV prevalence, Jharkhand is vulnerable. Post Covid19, HIV has increased.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, United States. Electronic address:
Harmful algal blooms (HABs) are increasingly a global concern and the issue of all fifty states in the U.S as it poses a threat to human health and aquatic ecosystem. This study aimed to investigate the relationship of HABs with streamflow and water quality parameters and assess the hydrology-based potential future HABs in the Ohio River Basin at Ironton (ORBI) using the Soil and Water Assessment Tool (SWAT).
View Article and Find Full Text PDFSci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFAmbio
January 2025
School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Parkville, VIC, Australia.
Rising sea levels under a changing climate will cause permanent inundation, flooding, coastal erosion, and saltwater intrusion. An emerging adaptation response is planned relocation, a directed process of relocating people, assets, and infrastructure to safer locations. Climate-related planned relocation is an unfolding process, yet no longitudinal studies have examined outcomes over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!