Source apportionment of ambient PM collected at three sites in an urban-industrial area with multi-time resolution factor analyses.

Sci Total Environ

Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.

Published: December 2022

Chemical speciation data for PM, collected for annual trend analyses of health-relevant species, at three receptor sites in a highly industrialized area (IJmond) in the Netherlands were used in a multi-time resolution receptor model (ME-2) to identify the PM sources in this area. Despite the available data not being optimized for receptor modelling, five-factor solutions were obtained for all sites based on independent PMF analysis on PM data from the three sites (IJM, WAZ and BEV). Four factors were common to all three sites: nitrate-sulphate (average percentage contributions to PM: IJM: 35.3 %, WAZ: 37.7 %, and BEV: 36.3 %); sea salt (20.2 %, 23.7 %, 15.2 %); industrial (8.1 %, 11.0 %, 18.1 %) and brake wear/traffic (31.4 %, 21.2 %, 20.6 %). At WAZ, a local/site-specific factor containing most of the PAH measurements was found (6.4 %) while a crustal matter factor was resolved at IJM (7.6 %) and BEV (9.8 %). Additionally, sludge-drying was a potential source of the marker species in the industrial factor at WAZ. Bootstrapping (BS) and factor displacement (DISP) were applied to the factor profiles in this work for error estimation. In general, the factor profiles at all three sites had very small intervals from both BS and DISP methods. To our knowledge, this is the first time DISP was applied in a complex model such as the multi-time resolution model. Most of the measured metal and PAH concentrations found in the IJmond area during the 2017-2019 period had local sources, with significant contributions from several processes related to the steel industry. This study shows that available detailed PM chemical speciation data, although primarily collected for annual trend analyses of health-relevant species, could also be used in receptor modelling by applying a multi-time framework. We propose general recommendations for the optimization of the measurement strategy for source apportionment of PM in areas with similar urban-industrial land use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157981DOI Listing

Publication Analysis

Top Keywords

three sites
16
multi-time resolution
12
source apportionment
8
chemical speciation
8
speciation data
8
data collected
8
collected annual
8
annual trend
8
trend analyses
8
analyses health-relevant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!