High-selectivity and high-exclusion restricted access materials (RAMs) benefit the demands of complex biological samples. In this study, mixed-mode-adsorption RAMs bearing zwitterionic polymer brushes as their outer layers were proposed. The reversed-phase/bronate affinity (RP/BA) mixed-mode adsorption layers on the surface of the silica gel were first formed by surface-initiated atom transfer radical polymerization (SI-ATRP) employing styrene (St) and 4-vinylphenylboronic acid (4-VPBA) as comonomers Afterward, zwitterionic poly(sulfobetaine methacrylate, SBMA) was grafted via another SI-ATRP reaction to establish the external hydrophilic layer. The selectivity of the developed Sil@poly(St-co-4-VPBA)@poly(SBMA) RAMs was examined employing different analytes (benzenes, tetracyclines, neurotransmitters, β-agonists, and their structural analogs), the results revealed the preferential adsorption of substances bearing phenyl and cis-diol groups owing to the multiple interactions (hydrophobic, π-π and BA forces) caused by the RAMs with RP/BA mixed-mode adsorption mechanism. On the other hand, the synergistic effect of the strong-hydrophilicity and high-density zwitterionic poly(SBMA) could efficiently promote the exclusion of RAMs. Moreover, the experimental data revealed that > 99% of bovine serum albumin (BSA, 1 g L) could be excluded, although the tetracycline (50 µg L) was completely adsorbed, indicating the maximized adsorption capacity of the RAMs toward small molecules after the efficient exclusion of protein interference. Solid-phase extraction (SPE) employing the developed Sil@poly(St-co-4-VPBA)@poly(SBMA) RAM coupled with high-performance liquid chromatography (HPLC) was successfully employed to determine the tetracycline content of a milk sample. The established method exhibited satisfactory linearity (10-700 µg L), high recovery (93.1%-108.6%) and good precision (2.6%-8.4%). Finally, our proposed method for synthesizing RAMs could efficiently boost the adsorption selectivity and restricted access function of RAMs, thereby promoting their application in analyzing biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463398DOI Listing

Publication Analysis

Top Keywords

restricted access
12
access materials
8
zwitterionic polymer
8
outer layers
8
rams
8
biological samples
8
rp/ba mixed-mode
8
mixed-mode adsorption
8
developed sil@polyst-co-4-vpba@polysbma
8
adsorption
5

Similar Publications

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Background: The Weight-adjusted-waist index (WWI) has emerged as a predictive factor for a range of metabolic disorders. To date, the predictive value of the WWI in relation to sarcopenia in individuals with diabetics has not been extensively explored. This study aims to investigate the impact of the WWI on the prevalence of sarcopenia among patients with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

The optimal duration of on-scene cardiopulmonary resuscitation (CPR) for out-of-hospital cardiac arrest (OHCA) patients remains uncertain. Determining this critical time period requires outweighing the potential risks associated with intra-arrest transport while minimizing delays in accessing definitive hospital-based treatments. This study evaluated the association between on-scene CPR duration and 30-day neurologically favorable survival based on the transport time interval (TTI) in patients with OHCA.

View Article and Find Full Text PDF

Global insight into rare disease and orphan drug definitions: a systematic literature review.

BMJ Open

January 2025

Centre for Public Health, Institute of Clinical Sciences B, Royal Victoria Hospital, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK.

Objectives: This study sheds light on the available global definitions, classifications, and criteria used for rare diseases (RDs), ultrarare diseases (URDs), orphan drugs (ODs) and ultraorphan drugs (UODs) and provides insights into the rationale behind these definitions.

Design: A systematic literature review was conducted to identify existing definitions and the criteria used to define RDs, ODs and their subtypes.

Data Sources: Searches were performed in the PubMed/Medline, Embase, Scopus and Web of Science (Science and Social Sciences Citation Index) databases covering articles published from 1985 to 2021.

View Article and Find Full Text PDF

Biomarkers and Social Determinants in atherosclerotic Arterial Diseases: A Scoping Review.

Ann Vasc Surg

January 2025

Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy; Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy. Electronic address:

Background: Arterial diseases like coronary artery disease, carotid stenosis, peripheral artery disease, and abdominal aortic aneurysm have high morbidity and mortality, making them key research areas. Their multifactorial nature complicates patient treatment and prevention. Biomarkers offer insights into the biochemical and molecular processes, while social factors also significantly impact patients' health and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!