A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Relevance of Surface-Exposed Lysine Residues Designed for Functionalization of Laccase]. | LitMetric

Fungal laccases are oxidoreductases with low-specificity for substrates. The characterization of laccase's surface is a prerequisite used to obtain hybrid catalysts with new properties. Surface-exposed lysine residues are targets in immobilization reactions. In this work, LAC3-K0, an enzyme devoid of lysine, was used as a platform to detect potential surface-exposed sites suitable for replacement with a lysine residue. Seven sites were selected from a LAC3-K0 3-D model, and single lysine mutants (UNIKn, n = residue number) were obtained by site-directed mutagenesis. All mutants were expressed in Saccharomyces cerevisiae W303-1A and detected as functional secreted proteins by their ability to oxidize guaiacol or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) on agar plates. All variants were active at acidic pH but presented no activity at neutral pH, as expected. Likewise, variants were stable a temperature between 15-55°C, and were completely inactivated at 70°C. Oxidation assays revealed that the replacement of one or two surface residues with lysine greatly affected enzyme activity and substrate specificity. The catalytic; parameters (KM^(app) and kcat^(app)) determined with ABTS were found to be different among the variants; Vmax^(app) was 1.5-2 fold higher in UNIK269 and triple mutant, with a KM^(app) of 0.27 and 0.30, respectively; kcat^(app )was 30.25 in UNIK238 and 32.34 in the triple mutant. The role of hydrophobic patches detected on the surface of LAC3-K0 was determined to be a favorable factor to be considered in the interaction of hybrid materials. All variants with uniquely surface located lysine created in this work can be in demand for obtaining laccases with a certain substrate specificity in the design of hybrid materials.

Download full-text PDF

Source

Publication Analysis

Top Keywords

surface-exposed lysine
8
lysine residues
8
substrate specificity
8
triple mutant
8
hybrid materials
8
lysine
7
[relevance surface-exposed
4
residues designed
4
designed functionalization
4
functionalization laccase]
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!