Background: Biological treatment and treat-to-target approaches guide the achievement of inactive disease and clinical remission in Autoinflammatory Diseases (AID). However, there is limited evidence addressing optimal tapering strategies and/or discontinuation of biological treatment in AID. This study evaluates available evidence of tapering biological treatment and explores key factors for successful tapering.
Methods: A systematic literature search was conducted in Embase, MEDLINE, Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials using the OVID platform (1990-08/2020). Bibliographic search of relevant reviews was also performed. Studies/case series (n ≥ 5) in AID patients aged ≤ 18 years with biological treatment providing information on tapering/treatment discontinuation were included. After quality assessment aggregated data were extracted and synthesized. Tapering strategies were explored.
Results: A total of 6035 records were identified. Four papers were deemed high quality, all focused on systemic juvenile idiopathic arthritis (sJIA) (1 open-label randomized trial, 2 prospective, 1 retrospective observational study). Biological treatment included anakinra (n = 2), canakinumab (n = 1) and tocilizumab (n = 1). Strategies in anakinra tapering included alternate-day regimen. Canakinumab tapering was performed randomized for dose reduction or interval prolongation, whereas tocilizumab was tapered by interval prolongation. Key factors identified included early start of biological treatment and sustained inactive disease.
Conclusion: Tapering of biological treatment after sustained inactive disease should be considered. Guidance for optimal strategies is limited. Future studies may leverage therapeutic drug monitoring in combination with pharmacometric modelling to further enhance personalized "taper-to-target" strategies respecting individual patients and diseases aspects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375310 | PMC |
http://dx.doi.org/10.1186/s12969-022-00725-3 | DOI Listing |
Respir Res
January 2025
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.
Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.
Eur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!