Background: Fuel ethanol from lignocellulose could be important source of renewable energy. However, to make the process feasible, more efficient microbial fermentation of pentose sugars, mainly xylose, should be achieved. The native xylose-fermenting thermotolerant yeast Ogataea polymorpha is a promising organism for further development. Efficacy of xylose alcoholic fermentation by O. polymorpha was significantly improved by metabolic engineering. Still, genes involved in regulation of xylose fermentation are insufficiently studied.
Results: We isolated an insertional mutant of O. polymorpha with impaired ethanol production from xylose. The insertion occurred in the gene HXS1 that encodes hexose transporter-like sensor, a close homolog of Saccharomyces cerevisiae sensors Snf3 and Rgt2. The role of this gene in xylose utilization and fermentation was not previously elucidated. We additionally analyzed O. polymorpha strains with the deletion and overexpression of the corresponding gene. Strains with deletion of the HXS1 gene had slower rate of glucose and xylose consumption and produced 4 times less ethanol than the wild-type strain, whereas overexpression of HXS1 led to 10% increase of ethanol production from glucose and more than 2 times increase of ethanol production from xylose. We also constructed strains of O. polymorpha with overexpression of the gene AZF1 homologous to S. cerevisiae AZF1 gene which encodes transcription activator involved in carbohydrate sensing. Such transformants produced 10% more ethanol in glucose medium and 2.4 times more ethanol in xylose medium. Besides, we deleted the AZF1 gene in O. polymorpha. Ethanol accumulation in xylose and glucose media in such deletion strains dropped 1.5 and 1.8 times respectively. Overexpression of the HXS1 and AZF1 genes was also obtained in the advanced ethanol producer from xylose. The corresponding strains were characterized by 20-40% elevated ethanol accumulation in xylose medium. To understand underlying mechanisms of the observed phenotypes, specific enzymatic activities were evaluated in the isolated recombinant strains.
Conclusions: This paper shows the important role of hexose sensor Hxs1 and transcription factor Azf1 in xylose and glucose alcoholic fermentation in the native xylose-fermenting yeast O. polymorpha and suggests potential importance of the corresponding genes for construction of the advanced ethanol producers from the major sugars of lignocellulose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9375311 | PMC |
http://dx.doi.org/10.1186/s12934-022-01889-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!