The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-022-02549-z | DOI Listing |
iScience
January 2025
State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
MT+ is pivotal in the dorsal visual stream, encoding tool-use characteristics such as motion speed and direction. Despite its conservation between humans and monkeys, differences in MT+ spatial location and organization may lead to divergent, yet unexplored, connectivity patterns and functional characteristics. Using diffusion tensor imaging, we examined the structural connectivity of MT+ subregions in macaques and humans.
View Article and Find Full Text PDFChembiochem
January 2025
Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Delhi NCR, Greater Noida, Uttar Pradesh, 201314, India.
Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Taywade College, Koradi, Nagpur, Maharashtra, 441111, India.
Coastal waters are the ultimate destination for both point and non-point sources of contamination. The uncontrolled dicharge of fecal waste into the ocean harms natural resources, marine life, and poses health risks to humans. Regular monitoring of coastal water quality and source tracking is important to prevent disease outbreaks.
View Article and Find Full Text PDFbioRxiv
September 2024
Psychology, New York University Abu Dhabi, Abu Dhabi, UAE.
The fundus of the superior temporal sulcus (FST) in macaques is implicated in the processing of complex motion signals, yet a human homolog remains elusive. Here we considered potential localizers and evaluated their effectiveness in delineating putative FST (pFST), from hMT and MST, two nearby motion-sensitive areas in humans. Nine healthy participants underwent scanning sessions with 2D and 3D motion localizers, as well as population receptive field (pRF) mapping.
View Article and Find Full Text PDFNutrients
August 2024
M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Université Rennes, 35044 Rennes, France.
Objective: Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males.
Material And Methods: This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!