Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The kinetics of spin-selective reactions involving triplet molecules, such as triplet-triplet annihilation or electron transfer to dioxygen molecules in the ground triplet spin state, are strongly dependent on the dipole-dipole interaction (DDI) of electron spins in spin-1 particles. The effect of this interaction on the intersystem crossing in the reaction encounter complex of the paramagnetic particles was previously considered for some particular cases using oversimplified approaches. In this study, we consider a rigorous kinetic model of the irreversible reaction between the spin-1/2 and spin-1 particles in an encounter complex with the reactive doublet state. This model explicitly includes both isotropic exchange coupling of the reactants and spin dependence of the reaction rate in the form of the Haberkorn reaction term. For the time-independent DDI, an analytical expression for the reaction kinetics was derived. The effect of DDI fluctuations was analyzed using numerical simulations. It was found that increasing both the exchange coupling and the reaction rate constants can significantly slow down the quartet-doublet spin transitions and, as a consequence, the observed spin-selective reaction rate. Additionally, the presence of the irreversible reaction in the doublet states affects a coherent evolution in the non-reactive quartet subsystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0101173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!