Females and males can exhibit striking differences in body size, relative trait size, physiology and behavior. As a consequence the sexes can have very different rates of whole-body energy use, or converge on similar rates through different physiological mechanisms. Yet many studies that measure the relationship between metabolic rate and body size only pay attention to a single sex (more often males), or do not distinguish between sexes. We present four reasons why explicit attention to energy-use between the sexes can yield insight into the physiological mechanisms that shape broader patterns of metabolic scaling in nature. First, the sexes often differ considerably in their relative investment in reproduction which shapes much of life-history and rates of energy use. Second, males and females share a majority of their genome but may experience different selective pressures. Sex-specific energy profiles can reveal how the energetic needs of individuals are met despite the challenge of within-species genetic constraints. Third, sexual selection often pushes growth and behavior to physiological extremes. Exaggerated sexually selected traits are often most prominent in one sex, can comprise up to 50% of body mass and thus provide opportunities to uncover energetic constraints of trait growth and maintenance. Finally, sex-differences in behavior such as mating-displays, long-distance dispersal and courtship can lead to drastically different energy allocation among the sexes; the physiology to support this behavior can shape patterns of metabolic scaling. The mechanisms underlying metabolic scaling in females, males and hermaphroditic animals can provide opportunities to develop testable predictions that enhance our understanding of energetic scaling patterns in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icac135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!