Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons.

Acta Biomater

Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore; American Museum of Natural History, New York, NY, USA.

Published: October 2022

Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young's modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young's modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young's modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young's modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales. STATEMENT OF SIGNIFICANCE: Coral biomineralization and the ability of corals' skeletal structure to withstand biotic and abiotic forces underpins the success of reef ecosystems. At the microscale, we show increased skeletal stiffness and hardness perpendicular to the coral growth direction. By comparing nano- and micro-scale indentation results, we also reveal an effect of hierarchical architecture on the mechanical properties of coral skeletons and hypothesize that crystal packing and orientation result in microscale anisotropy. In contrast to previous findings, we demonstrate that mechanical and crystallographic properties of coral skeletons can vary between surface planes, within surface planes, and at different analytical scales. These results improve our understanding of biomineralization and the effects of scale and direction on how biomineral structures respond to environmental stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.08.012DOI Listing

Publication Analysis

Top Keywords

coral skeletons
20
young's modulus
16
mechanical properties
16
properties coral
12
modulus hardness
12
crystal
8
crystal orientation
8
anisotropy porites
8
porites skeletons
8
coral
8

Similar Publications

Chemical Changes Under Heat Stress and Identification of Dendrillolactone, a New Diterpene Derivative with a Rare Rearranged Spongiane Skeleton from the Antarctic Marine Sponge .

Mar Drugs

December 2024

Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.

The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators.

View Article and Find Full Text PDF

Biomonitoring potential of trace metal accumulation and bioavailability in coral skeletons and reef sediments of Persian Gulf: A comparative study.

Ecotoxicol Environ Saf

January 2025

Department of Environmental Science and Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489, Iran. Electronic address:

Nayband Marine National Park in the northern Persian Gulf is an important ecological areas, significantly impacted by industrial activites that poses risk of trace metal pollution to living organisms. In this study, we investigated the bioaccumulation of trace metals in scleractinian corals using annual growth bands and biota-sediment accumulation factor to assess their potential as biomonitoring organisms. Furthermore, to assess the sediment quality, sediment pollution indices and international guidelines was employed.

View Article and Find Full Text PDF

Corals have been used as geochemical proxies since the 1970s, playing a prominent role in paleoceanography. However, it has not been well elucidated how aqueous ions sourced from seawater are transported and precipitated in coral skeletons. There are limited foundational methods to differentiate and quantify biogenic and abiogenic effects during skeletal formation.

View Article and Find Full Text PDF

Coral persistence in the Anthropocene depends on interactions among holobiont partners (coral animals and microbial symbionts) and their environment. Cryptic coral lineages-genetically distinct yet morphologically similar groups-are critically important as they often exhibit functional diversity relevant to thermal tolerance. In addition, environmental parameters such as thermal variability may promote tolerance, but how variability interacts with holobiont partners to shape responses to thermal challenge remains unclear.

View Article and Find Full Text PDF

Bioinspired bicontinuous adhesive hydrogel for wearable strain sensor with high sensitivity and a wide working range.

J Colloid Interface Sci

January 2025

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094 China. Electronic address:

Conductive hydrogel strain sensors demonstrate extensive potential in artificial robotics, human-computer interaction, and health monitoring, owing to their excellent flexibility and biocompatibility. Wearable strain sensors for real-time monitoring of human activities require hydrogels with self-adhesion, desirable sensitivity, and wide working range. However, balancing the high sensitivity and a wide working range remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!