Enhancement of olfaction by femtomolar concentrations of zinc ions.

Neurosci Lett

Department of Otorhinolaryngology, Hyotan-machi ENT Clinic, Hyotan-machi 2-13, Kanazawa 920-0845, Japan. Electronic address:

Published: September 2022

Zinc is recognized as an important element for olfaction. Zinc nanoparticles enhance olfaction in response to odors; however, the mechanisms underlying this action remain unknown. Herein, the effect of zinc on olfactory receptors was deduced using electro-olfactogram (EOG) responses recorded from the isolated olfactory mucosae of bullfrogs (Rana catesbeiana) following the administration or chelation of zinc ions. Menthone and n-amyl acetate were used as odorants, whereas forskolin (an adenylate cyclase activator) and cholera toxin (a Gαolf activator) were used as intracellular signal transduction activators. The EOG responses provoked by the odorants and cholera toxin were suppressed by dithizone-mediated zinc ion chelation, and the EOG responses were recovered by administering non-chelated zinc. However, the EOG response to forskolin was not suppressed by dithizone. In contrast, the addition of femtomolar concentrations of zinc ions enhanced the EOG responses. The above-mentioned effects on EOG responses were examined by changing the concentration of zinc ions but not zinc nanoparticles. The results of this study suggest that Gαolf alone or both olfactory receptors and Gαolf likely require zinc ions for their activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2022.136837DOI Listing

Publication Analysis

Top Keywords

zinc ions
20
eog responses
20
zinc
11
femtomolar concentrations
8
concentrations zinc
8
ions zinc
8
zinc nanoparticles
8
olfactory receptors
8
cholera toxin
8
eog
6

Similar Publications

Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.

View Article and Find Full Text PDF

Implanted biomaterials release inorganic ions that trigger inflammatory responses, which recruit immune cells whose biochemical signals affect bone tissue regeneration. In this study, we evaluated how mouse macrophages (RAW264, RAW) and mesenchymal stem cells (KUSA-A1, MSCs) respond to seven types of ions (silicon, calcium, magnesium, zinc, strontium, copper, and cobalt) that reportedly stimulate cells related to bone formation. The collagen synthesis, alkaline phosphatase activity, and osteocalcin production of the MSCs varied by ion dose and type after culture in the secretome of RAW cells.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Microwave synthesis of molybdenum disulfide quantum dots and the application in bilirubin sensing.

Methods Appl Fluoresc

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China, Shenyang, 110004, CHINA.

Molybdenum disulfide quantum dots (MoS2 QDs) is a new type of graphite like nanomaterial, which exhibited well chemical stability, unique fluorescence characteristics, and excellent biocompatibility. The conventional hydrothermal synthesis of MoS2 generally requires a long-term reaction at high temperature and high pressure. Herein, we have developed a simple and fast MoS2 QDs synthesis scheme using microwave heating, and further modified the surface of MoS2 QDs using 3-aminophenylboronic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!