Dredged sediments, as a product of mitigating endogenous pollution of rivers and lakes, cause severe environmental pollution without suitable disposal. To reduce dredged sediments, the electrochemical oxidation (EO) of peroxydisulfate (PS) on a boron-doped diamond (BDD) anode (EO/BDD-PS) was utilized to enhance the dewaterability of the dredged sediments. The soluble chemical oxygen demand increased in the EO/BDD-PS system, and more than 70.0% of the specific resistance to filtration was reduced by EO/BDD-PS within 20 min. The optimal conditions were determined to be as follows: current density, 30 mA cm; PS dosage 4 g L; and initial pH, 6.96. After treatment with EO/BDD-PS, the electronegativity of the sludge flocs was alleviated and the particle size increased from 7.61 to 10.64 μm. Furthermore, proteins and polysaccharides were degraded, and tightly bound extracellular polymeric substances (TB-EPS) and loosely bound EPS (LB-EPS) were effectively transported to soluble EPS (S-EPS). Furthermore, humification of organic matter occurred in S-EPS and LB-EPS when the dredged sediment was treated with EO/BDD-PS. Dominant hydroxyl radicals (•OH) and sulfate radicals (SO•) were generated in the EO/BDD-PS system. Moreover, the efficiency of the filtrate as an electrolyte decreased slightly after recycling five times. Therefore, this method may be economical for enhancing the dewaterability of dredged sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135832 | DOI Listing |
Sci Rep
January 2025
Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.
View Article and Find Full Text PDFWater Res
December 2024
Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (IO-FURG), Av. Itália s/n, Rio Grande, RS 96203-900, Brazil. Electronic address:
Organotin compounds (OTs) used to be the most widely used biocide in antifouling paint systems, but the International Maritime Organization (IMO) banned them because of their high environmental toxicity to non-target organisms. Currently, at least 25 active ingredients are being employed as biocides in antifouling paint formulations. In the present study, silicone rubber-based passive sampling was used to determine the freely dissolved concentrations (C) of 6 OTs and 4 booster biocides in the water column at the entrance of Santos Port's main navigation channel, the largest Port of South America (southeastern Brazil).
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
U S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA.
PFAS has a ubiquitous environmental occurrence, posing challenges to sediment management. To address data gaps concerning release of PFAS from sediment to the water column during dredged material aquatic placement or other sediment resuspension activity, we generated elutriates from PFAS-contaminated sediments. Sediments were obtained from both freshwater and estuarine environments, with a field-collected sediment representative of contaminated areas and a spiked sediment with concentrations exceeding levels frequently measured at contaminated sites.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China. Electronic address:
The comprehensive effects of environmental dredging on heavy metals (HM) are still uncertain. This study comprehensively evaluates the long-term effects of dredging on the environmental risk and bioavailability of HM (Cu, Ni, Zn, Pb, Cd, Cr, and As) in Lake Taihu, China, by comparing simulated dredged treated (D) and undredged (UD) sediment cores under in-situ conditions for one year. Threshold effect level (TEL), geological accumulation index (I), potential ecological risk index (RI), and ratios of secondary phase and primary phase (RSP) methods were used to assess the environmental risk of sediment HM; and the diffusive gradient in thin-films (DGT) technique was applied to assess the bioavailability of sediment HM.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian 116000, PR China.
China, the world's largest dredging nation with over 2 billion cubic meters dredged annually, urgently needs tailored strategies for reusing those dredged sediments based on their physicochemical traits and pollution levels. The properties (grain size, pH, density, and conductivity), nutrient contents (organic matter, N, P, K), and heavy metal risks (Cu, Pb, Zn, Cr, Cd, Ni, Hg, As) of dredged sediments were investigated across 14 ports in China. Notably, 80 % of dredged sediments in China coastal ports are composed of silt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!