Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of novel rhein-piperazine-dithiocarbamate hybrids 3 were efficiently synthesized from rhein through a catalyst-free and one-pot, three-step sequence involving chlorination and N-acylation followed by dithiocarbamate formation. Hybrids 3 were evaluated for their in vitro cytotoxic potency by MTT assay against several human cancer and non-cancer cells. Five of the hybrids were more cytotoxic to human lung cancer cell line A549 than the parent rhein and the reference, cytarabine (CAR). Structure-activity relationship (SAR) analysis indicated that cytotoxicity was significantly enhanced when ester groups were incorporated into the hybrids (3h-j). In particular, hybrid 3h (IC = 10.93 μg/mL), containing a long-chain alkyl ester, was the most potent compound toward A549 tumor cells, being 7- and 5-fold more toxic than rhein (IC = 77.11 μg/mL) and CAR (IC = 49.27 μg/mL), respectively. Additionally, hybrid 3h was less toxic to the corresponding normal human lung fibroblast cell line, WI-38, with a higher selectivity index (SI, WI-38/A549 ≈ 5) than doxorubicin (DOX, SI ≈ 0), CAR (SI ≈ 2) and rhein (SI ≈ 1). Furthermore, hybrid 3h displayed more toxicity against four types of lung cancer cells (A549, Calu-1, PC-9, and H460; IC = 10.81-23.78 μg/mL) than against six other types of cancer cells (Huh-7, 786-O, HCT116, Hela, SK-BR-3, and SK-OV-3; IC = 23.85-51.98 μg/mL). Further mechanistic studies showed that hybrid 3h induced apoptosis in a concentration-dependent manner in human lung adenocarcinoma cell line PC-9. In vivo safety studies showed that hybrid 3h had no acute toxicity to the major organs of mice and did not lead to blood biochemical index changes. Our results exhibit prominent anti-cancer cell inhibition ability and no obvious systemic toxicity to normal organs, indicating that hybrid 3h has promising potential for further applications in anti-lung cancer drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2022.114651 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!