Electronic waste (e-waste) is increasing globally, but the impact of this source of combined pollution on soil biodiversity and multiple soil functions (i.e., ecosystem multifunctionality) remains unclear. Here, we evaluated the effects of combined pollution on the biodiversity and soil multifunctionality using samples collected from upland and paddy soils chronically contaminated with e-waste. Overall biodiversity, as well as the relative abundance and biodiversity of key ecological clusters, as combined pollution concentrations increased in upland soil, while the opposite was true in paddy soil. Soil multifunctionality followed the same trend. Organic pollutants had significant negative effects on soil multifunctionality and were the main influencing factors in upland soil. Heavy metals had significant positive effects on soil multifunctionality in paddy soil. Moreover, driving soil multifunctionality was overall biodiversity in upland soil but key biodiversity in paddy soil. Importantly, a strong positive association between key organism biodiversity and soil multifunctionality was found in soil with low contamination. However, the relationship between key organism biodiversity and soil multifunctionality weakened or disappeared in highly contaminated soil, whereas overall biodiversity was significantly and positively correlated with multifunctionality. Our results emphasized that severe e-waste contamination would reduce soil biodiversity and soil multifunctionality and warrants high attention.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129727DOI Listing

Publication Analysis

Top Keywords

soil multifunctionality
36
soil
21
biodiversity soil
20
combined pollution
16
soil biodiversity
12
upland soil
12
paddy soil
12
biodiversity
11
multifunctionality
11
effects combined
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!