A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comprehensive survey on deep learning techniques in CT image quality improvement. | LitMetric

A comprehensive survey on deep learning techniques in CT image quality improvement.

Med Biol Eng Comput

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110819, China.

Published: October 2022

High-quality computed tomography (CT) images are key to clinical diagnosis. However, the current quality of an image is limited by reconstruction algorithms and other factors and still needs to be improved. When using CT, a large quantity of imaging data, including intermediate data and final images, that can reflect important physical processes in a statistical sense are accumulated. However, traditional imaging techniques cannot make full use of them. Recently, deep learning, in which the large quantity of imaging data can be utilized and patterns can be learned by a hierarchical structure, has provided new ideas for CT image quality improvement. Many researchers have proposed a large number of deep learning algorithms to improve CT image quality, especially in the field of image postprocessing. This survey reviews these algorithms and identifies future directions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-022-02631-yDOI Listing

Publication Analysis

Top Keywords

deep learning
12
image quality
12
quality improvement
8
large quantity
8
quantity imaging
8
imaging data
8
image
5
comprehensive survey
4
survey deep
4
learning techniques
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!