Background And Objective: Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) was increasingly recognized as one of the most severe acute hyperimmune response of coronavirus disease 2019 (COVID-19). Clofazimine (CFZ) has attracted attention due to its anti-inflammatory property in immune diseases as well as infectious diseases. However, the role and potential molecular mechanism of CFZ in anti-inflammatory responses remain unclear.
Methods: We analyze the protein expression profiles of CFZ and LPS from Raw264.7 macrophages using quantitative proteomics. Next, the protective effect of CFZ on LPS-induced inflammatory model is assessed, and its underlying mechanism is validated by molecular biology analysis.
Results: LC-MS/MS-based shotgun proteomics analysis identified 4746 (LPS) and 4766 (CFZ) proteins with quantitative information. The key proteins and their critical signal transduction pathways including TLR4/NF-κB/HIF-1α signaling was highlighted, which was involved in multiple inflammatory processes. A further analysis of molecular biology revealed that CFZ could significantly inhibit the proliferation of Raw264.7 macrophages, decrease the levels of TNF-α and IL-1β, alleviate lung histological changes and pulmonary edema, improve the survival rate, and down-regulate TLR4/NF-κB/HIF-1α signaling in LPS model.
Conclusion: This study can provide significant insight into the proteomics-guided pharmacological mechanism study of CFZ and suggest potential therapeutic strategies for infectious disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376043 | PMC |
http://dx.doi.org/10.1007/s00011-022-01623-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!