It has been demonstrated experimentally that slow and fast conduction waves with distinct conduction velocities can occur in the same nerve system depending on the strength or the form of the stimulus, which give rise to two modes of nerve functions. However, the mechanisms remain to be elucidated. In this study, we use computer simulations of the cable equation with modified Hodgkin-Huxley kinetics and analytical solutions of a simplified model to show that stimulus-dependent slow and fast waves recapitulating the experimental observations can occur in the cable, which are the two stable conduction states of a bistable conduction behavior. The bistable conduction is caused by a positive feedback loop of the wavefront upstroke speed, mediated by the sodium channel inactivation properties. Although the occurrence of bistable conduction only requires the presence of the sodium current, adding a calcium current to the model further promotes bistable conduction by potentiating the slow wave. We also show that the bistable conduction is robust, occurring for sodium and calcium activation thresholds well within the experimentally determined ones of the known sodium and calcium channel families. Since bistable conduction can occur in the cable equation of Hodgkin-Huxley kinetics with a single inward current, i.e., the sodium current, it can be a generic mechanism applicable to stimulus-dependent fast and slow conduction not only in the nerve systems but also in other electrically excitable systems, such as cardiac muscles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515125 | PMC |
http://dx.doi.org/10.1016/j.bpj.2022.08.006 | DOI Listing |
Bull Math Biol
January 2025
Department of Mathematics, Vivekananda College, Kolkata, West Bengal, 700063, India.
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.
View Article and Find Full Text PDFMath Biosci
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA. Electronic address:
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis.
View Article and Find Full Text PDFChemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!