Background: Since the outbreak of COVID-19 pandemic in Rwanda, a vast amount of SARS-COV-2/COVID-19-related data have been collected including COVID-19 testing and hospital routine care data. Unfortunately, those data are fragmented in silos with different data structures or formats and cannot be used to improve understanding of the disease, monitor its progress, and generate evidence to guide prevention measures. The objective of this project is to leverage the artificial intelligence (AI) and data science techniques in harmonizing datasets to support Rwandan government needs in monitoring and predicting the COVID-19 burden, including the hospital admissions and overall infection rates.

Methods: The project will gather the existing data including hospital electronic health records (EHRs), the COVID-19 testing data and will link with longitudinal data from community surveys. The open-source tools from Observational Health Data Sciences and Informatics (OHDSI) will be used to harmonize hospital EHRs through the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). The project will also leverage other OHDSI tools for data analytics and network integration, as well as R Studio and Python. The network will include up to 15 health facilities in Rwanda, whose EHR data will be harmonized to OMOP CDM.

Expected Results: This study will yield a technical infrastructure where the 15 participating hospitals and health centres will have EHR data in OMOP CDM format on a local Mac Mini ("data node"), together with a set of OHDSI open-source tools. A central server, or portal, will contain a data catalogue of participating sites, as well as the OHDSI tools that are used to define and manage distributed studies. The central server will also integrate the information from the national Covid-19 registry, as well as the results of the community surveys. The ultimate project outcome is the dynamic prediction modelling for COVID-19 pandemic in Rwanda.

Discussion: The project is the first on the African continent leveraging AI and implementation of an OMOP CDM based federated data network for data harmonization. Such infrastructure is scalable for other pandemics monitoring, outcomes predictions, and tailored response planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9372951PMC
http://dx.doi.org/10.1186/s12911-022-01965-9DOI Listing

Publication Analysis

Top Keywords

data
18
will
10
artificial intelligence
8
intelligence data
8
data science
8
science techniques
8
techniques harmonizing
8
covid-19 pandemic
8
covid-19 testing
8
including hospital
8

Similar Publications

is widely used as a starter culture in the production of cheese, yoghurt and various cultured dairy products, which holds considerable significance in both research and practical applications within the food industry. Throughout history, the taxonomy of has undergone several adjustments and revisions. In 1984, based on the result of DNA-DNA hybridization, was reclassified as subsp.

View Article and Find Full Text PDF

Background: Kentucky is within the top five leading states for breast mortality nationwide. This study investigates the association between neighborhood socioeconomic disadvantage and breast cancer outcomes, including surgical treatment, radiation therapy, chemotherapy, and survival, and how associations vary by race and ethnicity in Kentucky.

Methods: We conducted a retrospective cohort analysis using data from the Kentucky Cancer Registry (KCR) for breast cancer patients diagnosed between 2010 and 2017, with follow-up through December 31, 2022.

View Article and Find Full Text PDF

Background: Oropharyngeal cancer (OPC) incidence is rising globally, predominantly in high-income countries due to human papillomavirus (HPV) infection. However, further data on OPC incidence in Brazil is needed. The aim of this study was to estimate the incidence, trends, and predictions of OPC in Brazilian population-based cancer registries (PBCRs) by period, sex, and topography.

View Article and Find Full Text PDF

Community health workers (CHWs) play a significant role in supporting health services delivery in communities with few trained health care providers. There has been limited research on ways to optimize the role of CHWs in HIV prevention service delivery. This study explored CHWs' experiences with offering HIV prevention services [HIV testing and HIV pre- and post-exposure prophylaxis (PrEP and PEP)] during three pilot studies in rural communities in Kenya and Uganda, which aimed to increase biomedical HIV prevention coverage via a structured patient-centered HIV prevention delivery model.

View Article and Find Full Text PDF

Causal Inference With Observational Data and Unobserved Confounding Variables.

Ecol Lett

January 2025

Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA.

Experiments have long been the gold standard for causal inference in Ecology. As Ecology tackles progressively larger problems, however, we are moving beyond the scales at which randomised controlled experiments are feasible. To answer causal questions at scale, we need to also use observational data -something Ecologists tend to view with great scepticism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!