We study the steady hemodynamics in physiological elastic microvessels proposing an advanced fluid-structure interaction model. The arteriolar tissue is modeled as a two-layer fiber-reinforced hyperelastic material representing its Media and Adventitia layers. The constitutive model employed (Holzapfel et al. in J Elast 61:1-48, 2000) is parametrized via available data on stress-strain experiments for arterioles. The model is completed by simulating the blood/plasma flow in the lumen, using the thixotropic elasto-viscoplastic model in its core, and the linear Phan-Thien and Tanner viscoelastic model in its annular part. The Cell-Free Layer (CFL) and the Fåhraeus and Fåhraeus-Lindqvist effects are considered via analytical expressions based on experimental data (Giannokostas et al. in Materials (Basel) 14:367, 2021b). The coupling between tissue deformation and blood flow is achieved through the experimentally verified pressure-shear hypothesis (Pries et al. Circ Res 77:1017-1023, 1995). Our calculations confirm that the increase in the reference inner radius produces larger expansion. Also, by increasing the intraluminal pressure, the thinning of the walls is more pronounced and it may reach 40% of the initial thickness. Comparing our predictions with those in rigid-wall microtubes, we conclude that apart from the vital importance of vasodilation, there is an up to 25% reduction in wall shear stress. The passive vasodilation contributes to the decrease in the tissue stress fields and affects the hemodynamic features such as the CFL thickness, reducing the plasma layer when blood flows in vessels with elastic walls, in quantitative agreement with previous experiments. Our calculations verify the correctness of the pressure-shear hypothesis but not that of the Laplace law.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10237-022-01612-2 | DOI Listing |
Sci Total Environ
January 2025
Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:
The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Department of Cardiology, First Medical Center, General Hospital of Chinese people's Liberation Army, Beijing, China.
The intra-aortic balloon pump (IABP) is a widely-used mechanical circulatory support device that enhances hemodynamics in patients with heart conditions. Although the IABP is a common clinical tool, its effectiveness in enhancing outcomes for patients with acute myocardial infarction and cardiogenic shock remains disputed. This study aimed to assess the effectiveness of intra-aortic dual-balloon pump (IADBP) and its impact on aortic hemodynamics compared with an IABP.
View Article and Find Full Text PDFElife
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .
View Article and Find Full Text PDFBiofabrication
January 2025
Materials Science & Engineering, Stanford University, McCullough 246, 496 Lomita Mall, Stanford, California, 94305-6104, UNITED STATES.
Advances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.
View Article and Find Full Text PDFScience
January 2025
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!