This is the first detailed study assessing the morphological features of the testis and testicular sperm of members of the freshwater blood flukes Sanguinicola sp. from Leuciscus idus (Cyprinidae) and for S. volgensis from Pelecus cultratus (Cyprinidae), and the marine blood fluke Aporocotyle simplex from Hippoglossoides platessoides (Pleuronectidae). The present study reports a unique feature in the distribution of germinal cellular components in freshwater Sanguinicola sp., showing the presence of the individual spermatocytes or their clusters in the testicular lobes, and the gathering of spermatid rosettes and spermatozoa within middle testicular lumen, which extends along the entire length of the testis. In contrast, each testis of marine A. simplex contains the usual mixed distribution of germ cells at various stages of development. The first TEM data on spermatozoon character of studied species has shown, unusual for digenean sperm structure, the absence of cortical microtubules in sperm principal region. Moreover, a variation in axoneme patterns is revealed in the studied aporocotylids, belonging to the different aporocotylid lineages a 9 + 0 axonemal type observed for freshwater teleost-infective species, Sanguinicola sp. and S. volgensis, and a 9 + '1' axonemal type revealed in spermatozoa of marine teleost-infective species A. simplex. The results discussed with the published data on the digenean sperm structure and the testicular patterns in the Aporocotylidae likely represent additional characteristics supporting the divergent evolutionary lineages of freshwater and marine aporocotylids. We anticipate future morphological studies of the sperm structure in aporocotylids of three lineages for an understanding of their phylogenetic relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-022-07622-4DOI Listing

Publication Analysis

Top Keywords

sperm structure
12
morphological features
8
features testis
8
freshwater blood
8
blood flukes
8
testicular patterns
8
patterns aporocotylidae
8
digenean sperm
8
axonemal type
8
teleost-infective species
8

Similar Publications

The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified.

View Article and Find Full Text PDF

Identification of key genes and variants associated with boar sperm freezability using whole genome resequencing.

Int J Biol Macromol

December 2024

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

Cryopreservation induces various cryodamages to the structural or functional aspects of boar sperm, resulting in the deterioration of sperm quality. The extent of cryodamages varies significantly among different individual boars. In our study, 50 boars with either good sperm freezability (GSF) or poor sperm freezability (PSF) were selected from a population of 402 boars.

View Article and Find Full Text PDF

Sperm Functional Status: A Multiparametric Assessment of the Fertilizing Potential of Bovine Sperm.

Vet Sci

December 2024

Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, Switzerland.

Sperm viability is routinely assessed for the quality control of cryopreserved bovine sperm batches but is not usually conclusive regarding their fertilizing potential. In this study, we investigated the fertility predictive value of bull sperm viability in combination with DNA integrity or the functional status of viable sperm. In addition to sperm viability, we flow cytometrically assessed the percentage of sperm with high DNA fragmentation index (%DFI) and the fraction of viable sperm with low intracellular Ca content and functional mitochondria using the Sperm Chromatin Structure Assay and a five-color staining panel in 791 and 733 cryopreserved batches with non-return rate (NRR) records after ≥100 first services, respectively.

View Article and Find Full Text PDF

Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.

View Article and Find Full Text PDF

Introduction: This study investigated the impact of the carrier on transferable blastocyst rate and live birth outcomes in couples with structural chromosomal abnormalities.

Methods: Couples were grouped into reciprocal translocation, Robertsonian translocation, or inversions groups, and clinical data were retrospectively analyzed. Preimplantation genetic testing for chromosomal structural rearrangements (PGT-SR) was conducted, and pregnancy outcomes were compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!