CRISPR technologies have advanced cancer modelling in mice, but CRISPR activation (CRISPRa) methods have not been exploited in this context. We establish a CRISPRa mouse (dCas9a-SAM) for inducing gene expression in vivo and in vitro. Using dCas9a-SAM primary lymphocytes, we induce B cell restricted genes in T cells and vice versa, demonstrating the power of this system. There are limited models of aggressive double hit lymphoma. Therefore, we transactivate pro-survival BCL-2 in Eµ-Myc;dCas9a-SAM haematopoietic stem and progenitor cells. Mice transplanted with these cells rapidly develop lymphomas expressing high BCL-2 and MYC. Unlike standard Eµ-Myc lymphomas, BCL-2 expressing lymphomas are highly sensitive to the BCL-2 inhibitor venetoclax. We perform genome-wide activation screens in these lymphoma cells and find a dominant role for the BCL-2 protein A1 in venetoclax resistance. Here we show the potential of our CRISPRa model for mimicking disease and providing insights into resistance mechanisms towards targeted therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374748PMC
http://dx.doi.org/10.1038/s41467-022-32485-9DOI Listing

Publication Analysis

Top Keywords

crispr activation
8
venetoclax resistance
8
bcl-2
5
generation crispr
4
activation mouse
4
mouse enables
4
enables modelling
4
modelling aggressive
4
aggressive lymphoma
4
lymphoma interrogation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!