A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oncogene Overlap Analysis of Circulating Cell-free Tumor DNA to Explore the Appropriate Criteria for Defining MET Copy Number-Driven Lung Cancer. | LitMetric

Introduction: Defining clinically relevant MET amplification levels in non-small cell lung cancer (NSCLC) remains challenging. We hypothesize that oncogene overlap and MET amplicon size decline with increase in MET plasma copy number (pCN), thus enriching for MET-dependent states.

Patients And Methods: We interrogated cell-free DNA NGS results of 16,782 patients with newly diagnosed advanced NSCLC to identify those with MET amplification as reported using Guardant360. Co-occurring genomic mutations and copy number alterations within each sample were evaluated. An exploratory method of adjusting for tumor fraction was also performed and amplicon size for MET was analyzed when available.

Results: MET amplification was detected in 207 (1.2%) of samples. pCN ranged from 2.1 to 52.9. Of these, 43 (20.8%) had an overlapping oncogenic driver, including 23 (11.1%) METex14 skipping or other MET mutations. The degree of (non-MET) oncogene overlap decreased with increases in pCN. Patients with MET pCN ≥ 2.7 had lower rates of overlapping drivers compared to those with MET pCN < 2.7 (6.1% vs. 16.3%, P = .033). None of the 7 patients with pCN > 6.7 had an overlapping driver. After adjusting for tumor fraction, adjusted pCN (ApCN) was also lower for those with overlapping drivers than those without (median ApCN 4.9 vs. 7.3, P =.024). There was an inverse relationship between amplicon size and pCN.

Conclusions: We propose that a high MET pCN and/or ApCN, together with the absence of overlapping oncogenic drivers and small MET amplicon size, will enrich for patients most likely to derive benefit from MET targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552597PMC
http://dx.doi.org/10.1016/j.cllc.2022.07.002DOI Listing

Publication Analysis

Top Keywords

amplicon size
16
met
13
oncogene overlap
12
met amplification
12
met pcn
12
lung cancer
8
met amplicon
8
copy number
8
pcn
8
adjusting tumor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!