Friendly fungi: symbiosis with commensal Candida albicans.

Trends Immunol

Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:

Published: September 2022

Mucosal tissues are constitutively colonized by a wide assortment of host-adapted microbes. This includes the polymorphic fungus Candida albicans which is a primary target of human adaptive responses. Immunogenicity is replicated after intestinal colonization in preclinical models with a surprising array of protective benefits for most hosts, but harmful consequences for a few. The interaction between fungus and host is complex, and traditionally, the masking of antigenic fungal ligands has been viewed as a tactic for fungal immune evasion during invasive infection. However, we propose that dynamic expression of cell wall moieties, host cell lysins, and other antigenic C. albicans determinants is necessary during the more ubiquitous context of intestinal colonization to prime immunogenicity and optimize mammalian host symbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027380PMC
http://dx.doi.org/10.1016/j.it.2022.07.003DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
intestinal colonization
8
friendly fungi
4
fungi symbiosis
4
symbiosis commensal
4
commensal candida
4
albicans mucosal
4
mucosal tissues
4
tissues constitutively
4
constitutively colonized
4

Similar Publications

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

Background: Polymethyl methacrylate (PMMA) is ideal for denture bases but is prone to biofilm accumulation, leading to denture stomatitis (DS), often involving . Dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) are introduced into dental materials for their antimicrobial and protein-repellent properties. This study investigates the effects of incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) into heat-polymerized (HP) and 3D-printed (3DP) denture base resins on microbial adhesion and cytotoxicity.

View Article and Find Full Text PDF

Relationships Between and the Rest of the World-Analysis of Dual-Species Biofilms and Infections.

Pathogens

January 2025

Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1j, 20-708 Lublin, Poland.

In this study, we investigated the interactions between and , , , and in mixed infections. Initially, these interactions were studied qualitatively and quantitatively in dual-species biofilms formed in vitro. The MTT assays, determination of the total CFU/mL, and SEM analysis showed that interacted differentially with the other spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!