The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629789PMC
http://dx.doi.org/10.1093/jxb/erac336DOI Listing

Publication Analysis

Top Keywords

pin genes
12
causal mechanisms
8
stay-green
8
drought adaptation
8
grain yield
8
stg1 stg2
8
stay-green phenotype
8
located stg1
8
root architecture
8
genes
5

Similar Publications

Background: Genetic factors play a role in asthma severity. However, low- and middle-income countries have minimal contribution to genomic asthma research. The current study investigates the influence of an important genetic asthma region (6p21) on severe asthma in a cohort of asthmatics in Pakistan.

View Article and Find Full Text PDF

Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression.

View Article and Find Full Text PDF

Background: Systemic chemotherapy constitutes an indispensable component of breast cancer (BC) management, where therapeutic drug combinations such as anthracyclines, platinum compounds, and taxanes form the cornerstone of standard treatment protocols. Although DNA repair genes are pivotal in cancer susceptibility, their specific roles in mediating acute or chronic toxicity outcomes induced by chemotherapy remain undetermined. Consequently, this study was planned  to elucidate the impact of polymorphisms in base excision repair (BER) genes, including XRCC1, XRCC2, XRCC3, APE1, and hOGG1, on treatment response and toxicity outcomes in BC patients undergoing paclitaxel and doxorubicin-based chemotherapy within an Indian population.

View Article and Find Full Text PDF

Signaling pathways mediating the induction of preharvest fruit drop in litchi.

Front Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China.

Certain litchi varieties, such as "Nuomici", are highly susceptible to preharvest fruit drop, which leads to significant losses in fruit yield and economic value. However, the precise molecular mechanisms underlying this issue are not yet fully understood. In this study, we aimed to elucidate the signaling pathways that facilitate preharvest fruit drop in litchi, using "Nuomici" and "Huaizhi" cultivars as examples, which demonstrate high and low preharvest fruit drop rates, respectively.

View Article and Find Full Text PDF

Regulation of PILS genes by bZIP transcription factor TGA7 in tomato plant growth.

Plant Sci

December 2024

Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute, Zhejiang University, Sanya 572025, PR China. Electronic address:

Auxin plays a pivotal role in plant growth regulation. The PIN-FORMED (PIN) proteins facilitate long-distance polar auxin transport, whereas the recently identified PIN-LIKES (PILS) proteins regulate intracellular auxin homeostasis. However, the auxin transport mechanisms in horticultural crops remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!