Natural products (+)-nootkatone is an important sesquiterpene compound and is widely used in pharmaceutical, cosmetic, agricultural and food industries. The aim of this study was to analyze the differentially expressed proteins (DEPs) during citrus aroma compound (+)-valencene biotransformation to (+)-nootkatone by Yarrowia lipolyticaby with high-throughput LC-MS/MS. A total of 778 proteins were differentially expressed, 385 DEPs were significantly up-regulated and 393 DEPs were markedly down-regulated. It was found that the enzymes transformed (+)-valencene to (+)-nootkatone were mainly existed in yeast intracellular and precipitated under the condition of 30-40 % ammonium sulfate. Most DEPs involved in amino acid and fatty acid metabolism were down-regulated during (+)-valencene biotransformation. The DEPs related to the carbohydrate metabolism, energy metabolism and most of transporter proteins were significantly up-regulated. Furthermore, the key enzymes involved in (+)-valencene transformation might be related to cytochrome P450s (gene2215 and gene2911) and dehydrogenases (gene6493). This is the first time that proteomics was used to investigate the metabolism mechanism of Yarrowia lipolytica during (+)-valencene biotransformation. The proteomic analysis of Yarrowia lipolytica provided a foundation for the molecular regulatory mechanism in the biotransformation to (+)-nootkatone from (+)-valencene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.08.020 | DOI Listing |
Microb Cell Fact
January 2025
Xianghu Laboratory, Hangzhou, 310027, China.
Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.
View Article and Find Full Text PDFBiotechnol J
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Department of Chemical Engineering, University of Waterloo, Waterloo, Canada.
Background: Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems.
View Article and Find Full Text PDFJ Biotechnol
September 2024
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 1 Jan Smuts Avenue,Braamfontein, Johannesburg, 2000, South Africa, PO Wits 2050, South Africa; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa. Electronic address:
The natural aroma compound (+)-nootkatone was obtained in selective conversions of up to 74 mol% from inexpensive (+)-valencene substrate by using a comparatively greener biocatalytic process developed based on modifications of the previously published Firmenich method. Buffer identity and concentration, pH, temperature and downstream work-up procedures were optimized to produce a crude product in which >90 % of (+)-valencene had been converted, with high chemoselectivity observed for (+)-nootkatone production. Interestingly, the biotransformation was carried out efficiently at temperatures as low as 21 ºC.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
June 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
Valencene, a high-value sesquiterpene with a citrus aroma, is widely employed in the food and cosmetic fields and the industrial synthesis of nootkatone. In this study, 16 genomic loci in the intergenic regions (IGRs) of were identified. A Ypet expression cassette was successfully integrated into various genomic loci by CRISPR-Cas9, with an impressive integration success rate of 87.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!