World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2022.08.008DOI Listing

Publication Analysis

Top Keywords

redox-sensitive micelles
8
cancer management
8
tumor theranostics
8
advancements redox-sensitive
4
micelles nanotheranostics
4
nanotheranostics horizon
4
horizon cancer
4
management health
4
health organisation
4
organisation delineated
4

Similar Publications

Co-delivery of chemical drugs and nucleic acids has attracted a great interest recently for treatment of inflammatory diseases. Dasatinib (DB), a tyrosine kinase inhibitor with anti-cancer effects, and Interferon Regulatory Factor 5 (IRF5) siRNA have shown anti-inflammatory effects. In the present study, a novel redox-responsive polymeric micelle was designed for co-delivery of DB and IRF5 siRNA-expressing plasmid (psiRF5) to enhance anti-inflammatory effects on macrophages.

View Article and Find Full Text PDF

CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects.

View Article and Find Full Text PDF

Tracking Selective Internalization and Intracellular Dynamics of Modified Chitosan Polymeric Micelles of Interest in Primary Hyperoxaluria Diseases.

ACS Omega

September 2024

Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain.

Primary hyperoxalurias (PHs) represent rare diseases associated with disruptions in glyoxylate metabolism within hepatocytes. Impaired glyoxylate detoxification in PH patients results in its accumulation and subsequent conversion into oxalate, a process catalyzed by the hepatic lactate dehydrogenase A enzyme (LDHA). Targeting this enzyme selectively in the liver using small organic molecules emerges as a potential therapeutic strategy for PH.

View Article and Find Full Text PDF

Cantharidin (CTD) has been widely used to treat hepatocellular carcinoma (HCC) in clinical practice. However, the current CTD preparations may induce hepatic and renal damage due to their non-specific distribution. Therefore, redox-sensitive polymer Pluronic F127-disulfide bond-poly(d,l-lactide) (F127-SS-PDLA) and active targeting polymer F127-glycyrrhetinic acid (F127-GA) were synthesized to prepare mixed micelles (GA/F127-SS-PDLA/CTD) for effective delivery of CTD.

View Article and Find Full Text PDF

Brain-targeting redox-sensitive micelles for codelivery of TMZ and β-lapachone for glioblastoma therapy.

Nanomedicine

October 2024

National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China.

Glioblastoma (GBM) is a central nervous system cancer with high incidence and poor survival rates. Enhancing drug penetration of the blood-brain barrier (BBB) and targeting efficacy is crucial for improving treatment outcomes. In this study, we developed a redox-sensitive targeted nano-delivery system (HCA-A2) for temozolomide (TMZ) and β-lapachone (β-Lapa).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!