Mapping the subcortical connectome using in vivo diffusion MRI: Feasibility and reliability.

Neuroimage

Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada. Electronic address:

Published: November 2022

Tractography combined with regions of interest (ROIs) has been used to non-invasively study the structural connectivity of the cortex as well as to assess the reliability of these connections. However, the subcortical connectome (subcortex to subcortex) has not been comprehensively examined, in part due to the difficulty of performing tractography in this complex and compact region. In this study, we performed an in vivo investigation using tractography to assess the feasibility and reliability of mapping known connections between structures of the subcortex using the test-retest dataset from the Human Connectome Project (HCP). We further validated our observations using a separate unrelated subjects dataset from the HCP. Quantitative assessment was performed by computing tract densities and spatial overlap of identified connections between subcortical ROIs. Further, known connections between structures of the basal ganglia and thalamus were identified and visually inspected, comparing tractography reconstructed trajectories with descriptions from tract-tracing studies. Our observations demonstrate both the feasibility and reliability of using a data-driven tractography-based approach to map the subcortical connectome in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119553DOI Listing

Publication Analysis

Top Keywords

subcortical connectome
12
feasibility reliability
12
connectome vivo
8
connections subcortical
8
connections structures
8
mapping subcortical
4
connectome
4
vivo diffusion
4
diffusion mri
4
mri feasibility
4

Similar Publications

Objective: Epilepsy is a common neurological disease affecting nearly 1% of the global population, and temporal lobe epilepsy (TLE) is the most common type. Patients experience recurrent seizures and chronic cognitive deficits that can impact their quality of life, ability to work, and independence. These cognitive deficits often extend beyond the temporal lobe and are not well understood.

View Article and Find Full Text PDF

Bridging animal models and humans: neuroimaging as intermediate phenotypes linking genetic or stress factors to anhedonia.

BMC Med

January 2025

Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.

Background: Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations.

Methods: We analyzed datasets from both rodents and humans.

View Article and Find Full Text PDF

Background And Objectives: Although multiple sclerosis (MS) can be conceptualized as a network disorder, brain network analyses typically require advanced MRI sequences not commonly acquired in clinical practice. Using conventional MRI, we assessed cross-sectional and longitudinal structural disconnection and morphometric similarity networks in people with MS (pwMS), along with their relationship with clinical disability.

Methods: In this longitudinal monocentric study, 3T structural MRI of pwMS and healthy controls (HC) was retrospectively analyzed.

View Article and Find Full Text PDF

Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags.

View Article and Find Full Text PDF

Neurobiological fingerprints of negative symptoms in schizophrenia identified by connectome-based modeling.

Psychiatry Clin Neurosci

January 2025

Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.

Aim: As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long-term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!