Force generation of KIF1C is impaired by pathogenic mutations.

Curr Biol

Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK. Electronic address:

Published: September 2022

Intracellular transport is essential for neuronal function and survival. The most effective plus-end-directed neuronal transporter is the kinesin-3 KIF1C, which transports large secretory vesicles and endosomes. Mutations in KIF1C cause hereditary spastic paraplegia and cerebellar dysfunction in human patients. In contrast to other kinesin-3s, KIF1C is a stable dimer and a highly processive motor in its native state. Here, we establish a baseline for the single-molecule mechanics of Kif1C. We show that full-length KIF1C molecules can processively step against the load of an optical trap and reach average stall forces of 3.7 pN. Compared with kinesin-1, KIF1C has a higher propensity to slip backward under load, which results in a lower maximal single-molecule force. However, KIF1C remains attached to the microtubule while slipping backward and re-engages quickly, consistent with its super processivity. Two pathogenic mutations, P176L and R169W, that cause hereditary spastic paraplegia in humans maintain fast, processive single-molecule motility in vitro but with decreased run length and slightly increased unloaded velocity compared with the wild-type motor. Under load in an optical trap, force generation by these mutants is severely reduced. In cells, the same mutants are impaired in producing sufficient force to efficiently relocate organelles. Our results show how its mechanics supports KIF1C's role as an intracellular transporter and explain how pathogenic mutations at the microtubule-binding interface of KIF1C impair the cellular function of these long-distance transporters and result in neuronal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631238PMC
http://dx.doi.org/10.1016/j.cub.2022.07.029DOI Listing

Publication Analysis

Top Keywords

pathogenic mutations
12
kif1c
9
force generation
8
hereditary spastic
8
spastic paraplegia
8
load optical
8
optical trap
8
force
4
generation kif1c
4
kif1c impaired
4

Similar Publications

Variants of uncertain significance (VUS) represent variants that lack sufficient evidence to be confidently associated with a disease, thus posing a challenge in the interpretation of genetic testing results. Here we report an improved method for predicting the VUS of Arylsulfatase A (ARSA) gene as part of the Critical Assessment of Genome Interpretation challenge (CAGI6). Our method uses a transfer learning approach that leverages a pre-trained protein language model to predict the impact of mutations on the activity of the ARSA enzyme, whose deficiency is known to cause a rare genetic disorder, metachromatic leukodystrophy.

View Article and Find Full Text PDF

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Vulvar adenocarcinoma of the intestinal type (VAIt) is a rare subtype of primary vulvar carcinoma, with ∼30 cases documented in the English literature. This study presents 2 new cases of HPV-independent VAIt with lymph node metastasis and discusses their clinical presentation, histopathologic features, and whole exome sequencing (WES) analysis. Both cases exhibited histologic features consistent with VAIt, including tubular, papillary, and mucinous carcinoma components.

View Article and Find Full Text PDF

Summary: Hypophosphatasia (HPP) is a genetic disorder due to pathological variants in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (ALP). HPP is typically associated with bone-related symptoms, such as bone deformity, fractures and bone pain in children, but can appear in adults with symptoms resembling arthritis. A 22-year-old male experienced repeated and severe sudden attacks of joint pain in the elbows and knees.

View Article and Find Full Text PDF

Unlabelled: . resistant to fluoroquinolones and macrolides are serious public health threats. Studies aiming to identify risk factors for drug-resistant have narrowly focused on antimicrobial use at the farm level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!