The search and identification of organic contaminants in agricultural watersheds has become a crucial effort to better characterize watershed contamination by pesticides. The past decade has brought a more holistic view of watershed contamination via the deployment of powerful analytical strategies such as non-target and suspect screening analysis that can search more contaminants and their transformation products. However, suspect screening analysis remains broadly confined to known molecules, primarily due to the lack of analytical standards and suspect databases for unknowns such as pesticide transformation products. Here we developed a novel workflow by cross-comparing the results of various in silico prediction tools against literature data to create an enhanced database for suspect screening of pesticide transformation products. This workflow was applied on tebuconazole, used here as a model pesticide, and resulted in a suspect screening database counting 291 transformation products. The chromatographic retention times and tandem mass spectra were predicted for each of these compounds using 6 models based on multilinear regression and more complex machine-learning algorithms. This comprehensive approach to the investigation and identification of tebuconazole transformation products was retrospectively applied on environmental samples and found 6 transformation products identified for the first time in river water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129706 | DOI Listing |
Sci Rep
January 2025
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
Background And Objective: Cloud-based Deep Learning as a Service (DLaaS) has transformed biomedicine by enabling healthcare systems to harness the power of deep learning for biomedical data analysis. However, privacy concerns emerge when sensitive user data must be transmitted to untrusted cloud servers. Existing privacy-preserving solutions are hindered by significant latency issues, stemming from the computational complexity of inner product operations in convolutional layers and the high communication costs of evaluating nonlinear activation functions.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
The inhibitory potential of an alcoholic extract derived from Canarium strictum leaves (CSL) was evaluated as a corrosion inhibitor for mild steel (MS) in 15% HCl solution. Furthermore, to enhance its inhibition effectiveness, the influence of potassium iodide (KI) was also examined. The corrosion inhibition and adsorption characteristics of CSL were comprehensively analysed through weight loss measurement, electrochemical impedance measurement (EIS), potentiodynamic polarization (PP), UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain.
Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, 14155-6135, Tehran, Iran. Electronic address:
Per- and polyfluoroalkyl substances (PFAS) are present in a variety of products that are disposed in landfills as waste and end up in landfill leachate which cause severe problems. The primary aim of this study was to detect PFAS in generated leachate in different sections of a process and disposal complex (called Aradkuh) located in Tehran, Iran. Due to techno economic limitations of measuring PFAS in Iran and easiness of measuring physicochemical parameters to determine PFAS concentration as well as better understanding of the mechanisms of these substances releases from landfills, this research aimed to evaluate the potential relationship between these parameters in landfill leachate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!