Linkage mapping reveals loci that underlie differences in Caenorhabditis elegans growth.

G3 (Bethesda)

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.

Published: September 2022

Growth rate and body size are complex traits that contribute to the fitness of organisms. The identification of loci that underlie differences in these traits provides insights into the genetic contributions to development. Leveraging Caenorhabditis elegans as a tractable metazoan model for quantitative genetics, we can identify genomic regions that underlie differences in growth. We measured postembryonic growth of the laboratory-adapted wild-type strain (N2) and a wild strain from Hawaii (CB4856) and found differences in body size. Using linkage mapping, we identified three distinct quantitative trait loci (QTL) on chromosomes IV, V, and X that are associated with variation in body growth. We further examined these growth-associated quantitative trait loci using chromosome substitution strains and near-isogenic lines and validated the chromosome X quantitative trait loci. In addition, we generated a list of candidate genes for the chromosome X quantitative trait loci. These genes could potentially contribute to differences in animal growth and should be evaluated in subsequent studies. Our work reveals the genetic architecture underlying animal growth variation and highlights the genetic complexity of growth in Caenorhabditis elegans natural populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526057PMC
http://dx.doi.org/10.1093/g3journal/jkac207DOI Listing

Publication Analysis

Top Keywords

quantitative trait
16
trait loci
16
underlie differences
12
caenorhabditis elegans
12
linkage mapping
8
loci underlie
8
growth
8
body size
8
chromosome quantitative
8
animal growth
8

Similar Publications

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

Aim: We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.

Methods: We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK ( = 796; White) and the maternal and infant cohort study (MICS) in Taiwan ( = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.

View Article and Find Full Text PDF

Interstitial lung disease (ILD) has shown limited treatment advancements, with minimal exploration of circulating protein biomarkers causally linked to ILD and its subtypes beyond idiopathic pulmonary fibrosis (IPF). In this study, we aimed to identify potential drug targets and circulating protein biomarkers for ILD and its subtypes. We utilized the most recent large-scale plasma protein quantitative trait loci (pQTL) data detected from the antibody-based method and ILD and its subtypes' GWAS data from the updated FinnGen database for Mendelian randomization analysis.

View Article and Find Full Text PDF

Chemical signals and social structures strengthen sexual isolation in Drosophila pseudoobscura.

Commun Biol

January 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.

Species that coexist in hybrid zones sexually isolate through reproductive character displacement, a mechanism that favours divergence between species. In Drosophila, behavioural and physiological traits discourage heterospecific mating between species. Recently, social network analysis revealed flies produce strain-specific and species-specific social structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!