The hierarchical microstructure evolution of an emerging biobased odd-odd polyamide 5,13 (PA5,13) films under the thermo-mechanical field, stepping from hydrogen bond (H-bond) arrangement to the crystalline morphology, has been investigated systematically. It is found that the reorganization of H-bonds under the thermo-mechanical field plays a crucial role in the crystallization of PA5,13. Especially, it is revealed that the crystallization process under the thermo-mechanical field develops along the chain axis direction, while lamellar fragmentation occurs perpendicular to the chain axis. Consequently, a stable and well-organized H-bond arrangement and lengthened lamellae with significant orientation have been constructed. Laudably, an impressive tensile strength of about 500 MPa and modulus of about 4.7 GPa are thus achieved. The present study could provide important guidance for the industrial-scale manufacture of high-performance biobased odd-odd PAs with long polymethylene segment in the dicarboxylic unit combined with a large difference between the polymethylene segments in the dicarboxylic and diamine units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c00826 | DOI Listing |
Micromachines (Basel)
November 2024
School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
This study focuses on the planetary gear reducer and employs ANSYS 13.0 software to perform thermo-mechanical coupled simulations for the laser cladding repair process, aiming to address gear failure caused by cracks. The optimal theoretical repair parameters were determined based on temperature and stress field analyses, and performance testing of the cladding layer was conducted to validate the feasibility of the selected parameters.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Applied Materials Science, Uppsala University, SE-751 03 Uppsala, Sweden.
In additive manufacturing, the presence of residual stresses in produced parts is a well-recognized phenomenon. These residual stresses not only elevate the risk of crack formation but also impose limitations on in-service performance. Moreover, it can distort printed parts if released, or in the worst case even cause a build to fail due to collision with the powder scraper.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFSci Rep
January 2025
Beijing Solidwel Intelligent Technology Co., Ltd., BeiJing, 100000, China.
Based on the Johnson-Cook constitutive model and modified Coulomb's law, the study investigates the impact of various process parameters on the weld temperature field in high-strength 5052 aluminum alloy friction stir welding (FSW) for aerospace applications. Utilizing a thermo-mechanical model, the significance of rotational speed, welding speed, and indentation on the peak weld temperature is examined through Taguchi's orthogonal experimental design. S/N ratio and ANOVA results show that the rotational speed has the most significant effect on the peak temperature of the weld, followed by the amount of indentation, and the welding speed has the smallest effect, the optimal combination of welding process parameters is determined as follows:the rotational speed is 1000 rpm, the amount of indentation is 0.
View Article and Find Full Text PDFSci Rep
December 2024
College of Safety Science and Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
The increase of coal seam mining depth leads to the increase of ground temperature stress, which affects the fracture development and spontaneous combustion characteristics of coal samples. Taking anthracite as the research object, scanning electron microscopy, low-temperature N adsorption, temperature- programmed experiments and infrared spectroscopy tests were carried out to analyze the mechanism of the influence of pore structure and the number of oxygen-containing functional groups on the spontaneous combustion characteristics of coal samples from the physical and chemical perspectives. The results show that the connection between pores and fractures is enhanced and the scale of micro-fractures is also increased after the thermal and mechanical coupling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!