Neutrophils are a first line of host defense against infection and utilize a series of oxygen-dependent processes to eliminate pathogens. Research suggests that oxygen availability can improve anti-infective mechanisms by promoting the formation of reactive oxygen species. Also, oxygen can synergistically upregulate the antibacterial properties of certain antibiotics against bacteria by altering their metabolism and causing an increase in the antibiotic uptake of bacteria. Therefore, understanding the effects of oxygen availability, as provided via a biomaterial treatment alone or along with potent antibacterial agents, on neutrophil functions can lead us to the development of new anti-inflammatory and anti-infective approaches. However, the study of neutrophil functions is often limited by their short life span and nonreproducibility, which suggests the need for cell line-based models as a substitute for primary neutrophils. Here, we took advantage of the differentiated human leukemia-60 cell line (HL-60), as an neutrophil model, to test the effects of local oxygen and antibacterial delivery by fluorinated methacrylamide chitosan (MACF) hydrogels incorporated with polyhexamethylene biguanide (PHMB) antibacterial agent. Considering the natural modes of neutrophil actions to combat bacteria, we studied the impact of our dual functioning oxygenating-antibacterial platforms on neutrophil phagocytosis and antibacterial properties as well as the formation of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). Our results demonstrated that supplemental oxygen and antibacterial delivery from MACF-PHMB hydrogel platforms upregulated neutrophil antibacterial properties and ROS production. NET formation by neutrophils upon treatment with MACF and PHMB varied when chemical and biological stimuli were used. Overall, this study presents a model to study immune responses and lays the foundation for future studies to investigate if similar responses also occur .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259321 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.2c00292 | DOI Listing |
Luminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFNarra J
December 2024
Department of Polymer Science and Engineering, Chonbuk National University, Jeonju, South Korea.
Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.
View Article and Find Full Text PDFInt Endod J
January 2025
Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq.
Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.
Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.
Stem Cell Res Ther
January 2025
IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.
Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!