miR-22 alleviates sepsis-induced acute kidney injury via targeting the HMGB1/TLR4/NF-κB signaling pathway.

Int Urol Nephrol

Emergency Intensive Care Unit, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, 313000, Zhejiang, China.

Published: February 2023

Background: Acute kidney injury (AKI) is a severe complication of sepsis, and is strongly correlated with MicroRNAs (miRNAs). However, the mechanism of miR-22 on sepsis-induced AKI is not clearly understood. The study aimed to explore the role and mechanism of miR-22 on AKI.

Methods: The AKI models were established by cecal ligation and puncture (CLP) surgery in SD rats and lipopolysaccharide (LPS) induction in HBZY-1 cells. In AKI rats, the content of serum creatinine (SCr) and blood urea nitrogen (BUN) were detected. Kidney tissues were pathologically examined by H&E and PAS staining. The LPS-induced HBZY-1 cells were transfected with mimics miR-22, si-HMGB1, or oe-HMGB1. miR-22 and HMGB1 expression was detected in vivo and in vitro. In transfected cells, HMGB1/TLR4/NF-κB pathway-related protein expressions were measured by Western blot. The relationship between miR-22 and HMGB1 was assessed by a dual-luciferase gene report. Inflammatory cytokine levels in serum and cells were assessed by ELISA.

Results: In AKI rats, kidney injury was observed, accompanied by the down-regulated miR-122 expression and up-regulated HMBG1 expression. The dual-luciferase report found miR-22-3p could targetly regulate HMBG1. Furthermore, both in vitro and in vivo experiments revealed that the releases of inflammatory cytokine were increased after AKI modeling, but the situation was reversed by mimics miR-22 or si-HMGB1 in vitro. In HBZY-1 cells, mimics miR-22 could suppress LPS-induced overexpression of HMGB1/TLR4/NF-κB signaling pathway-related proteins. However, the oe-HMGB1 addition reversed the effect of mimics miR-22.

Conclusion: miR-22 can inhibit the inflammatory response, target the HMGB1, and inhibit the HMGB1/TLR4/NF-kB pathway, to attenuate the sepsis-induced AKI, which indicates that miR-22 may serve as a potential treatment target in sepsis-induced AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859886PMC
http://dx.doi.org/10.1007/s11255-022-03321-2DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
sepsis-induced aki
12
hbzy-1 cells
12
mimics mir-22
12
mir-22
10
acute kidney
8
hmgb1/tlr4/nf-κb signaling
8
aki
8
mechanism mir-22
8
aki rats
8

Similar Publications

Severe pregnancy-associated atypical hemolytic uremia syndrome in the context of the COVID-19 pandemic: a novel survival case report.

BMC Pregnancy Childbirth

January 2025

Department of Intensive Care Medicine, Army Medical Center of PLA, No. 10 Changjiang Road, Yuzhong District, Chongqing, 400010, People's Republic of China.

Background: Pregnancy-associated atypical hemolytic uremic syndrome (aHUS) is a form of thrombotic microangiopathy (TMA) caused by uncontrolled activation of the complement system during pregnancy or the postpartum period. In the intensive care unit, aHUS must be differentiated from sepsis-related multiple organ dysfunction, thrombotic thrombocytopenic purpura (TTP), hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome. Early recognition of aHUS is critical for effective treatment and improved prognosis.

View Article and Find Full Text PDF

Both acute kidney injury and chronic kidney disease are risk factors for many outcomes of gastrointestinal bleeding (GIB). These are associated with higher mortality, longer hospitalisation, and greater need for transfusion in case of overt GIB. Our study aimed to further evaluate the role of kidney function in several clinical outcomes of GIB patients.

View Article and Find Full Text PDF

Chronic kidney disease.

Nat Rev Dis Primers

January 2025

Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilians University, Munich, Germany.

Chronic kidney disease (CKD) is defined by persistent abnormalities of kidney function or structure that have consequences for the health. A progressive decline of excretory kidney function has effects on body homeostasis. CKD is tightly associated with accelerated cardiovascular disease and severe infections, and with premature death.

View Article and Find Full Text PDF

Dexmedetomidine alleviates acute kidney injury in a rat model of veno-arterial extracorporeal membrane oxygenation.

Intensive Care Med Exp

January 2025

Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80, Cuiyingmen, Chengguan District, Lanzhou, 730030, China.

Background: Although extracorporeal membrane oxygenation (ECMO) is an effective technique for life support, the incidence of acute kidney injury (AKI) during ECMO support remains high. Dexmedetomidine (DEX), which has been widely used for sedation during ECMO, possesses several properties that help reduce the occurrence of AKI. This study aimed to investigate the protective effect of DEX on kidney function during ECMO.

View Article and Find Full Text PDF

Background: Acute Kidney Injury (AKI) is a health problem worldwide, accounting for high hospital morbidity and mortality. There is little available information regarding the characteristics and incidence of AKI in Latin America (LA), especially in Mexico.

Objectives: Systematically search the literature and perform a meta-analysis of the epidemiology of AKI in Mexico, to provide data on AKI and kidney replacement therapy (KRT) that would contribute to general knowledge in this matter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!