In this study, a Gelatin/Tragacanth/Nano-hydroxyapatite scaffold was fabricated freeze-drying method. A highly porous scaffold with an average pore diameter of 142 µm and porosity of 86% was found by the micro-computed tomography. The mean compressive strength of the scaffold was about 1.5 MPa, a value in the range of the spongy bone. The scaffold lost 10 wt.% of its initial weight after 28 days soaking in PBS that shows a fair degradation rate for a bone tissue engineering scaffold. Apatite formation ability of the scaffold was confirmed scanning electron microscopy, X-ray diffraction and Fourier transforming infrared spectroscopy, after 28 days soaking in simulated body fluid. The scaffold was able to deliver 93% of the loaded drug, Quercetin, during 120 h in phosphate-buffered solution, in a sustainable manner. The MTT assay using human bone mesenchymal stem cells showed 84% cell viability of the Quercetin-loaded scaffold. The expression of the osteogenic genes including Col I, Runx-2, BGLAP (gene of osteocalcin), bFGF, SP7 (gene of osterix) and SPP1 (gene of osteopontin) were all upregulated when Quercetin was loaded on the scaffold, which indicates the synergetic effect of the drug and the scaffold.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2113293 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!