In this paper, a wetting behavior of Pt(533) is studied by using heterodyne-detected vibrational sum-frequency generation spectroscopy under an ultrahigh-vacuum condition at 145 K. The imaginary parts of the surface nonlinear susceptibility (Imχ) of the H-bonded OH stretching region are successfully obtained for submonolayer water coverage that show negative bands indicating H-down (proton pointing to the substrate) configurations both for the water at the step and at the terrace. The growth manner of the Imχ signal with coverage and the results of an isotopic dilution are consistent with a model in which a one-dimensional (1D) chain at the step forms a "zigzag" structure that contains H-down orientations. This finding resolves the previous controversy in the literature concerning the proton configuration in the 1D water chain at the step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c01378 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!