Net-zero carbon strategies and green synthesis methodologies are key to realizing the United Nations' sustainable development goals (SDGs) on a global scale. An electrocatalytic glycerol oxidation reaction (GOR) holds the promise of upcycling excess glycerol from biodiesel production directly into precious hydrocarbon commodities that are worth orders of magnitude more than the glycerol feedstock. Despite years of research on the GOR, the synthesis process of nanoscale electrocatalysts still involves (1) prohibitive heat input, (2) expensive vacuum chambers, and (3) emission of toxic liquid pollutants. In this paper, these knowledge gaps are closed via developing a laser-assisted nanomaterial preparation (LANP) process to fabricate bimetallic nanocatalysts (1) at room temperature, (2) under an ambient atmosphere, and (3) without liquid waste emission. Specifically, PdCu nanoparticles with adjustable Pd:Cu content supported on few-layer graphene can be prepared using this one-step LANP method with performance that can rival state-of-the-art GOR catalysts. Beyond exhibiting high GOR activity, the LANP-fabricated PdCu/C nanomaterials with an optimized Pd:Cu ratio further deliver an exclusive product selectivity of up to 99% for partially oxidized C products with value over 280000-folds that of glycerol. Through DFT calculations and XAS experiments, the synergy between Pd and Cu is found to be responsible for the stability under GOR conditions and preference for C products of LANP PdCu. This dry LANP method is envisioned to afford sustainable production of multimetallic nanoparticles in a continuous fashion as efficient electrocatalysts for other redox reactions with intricate proton-coupled electron transfer steps that are central to the widespread deployment of renewable energy schemes and carbon-neutral technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c02865 | DOI Listing |
Nanoscale Adv
December 2024
Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
Electrolytic glucose oxidation has garnered great interest in energy-saving hydrogen generation. However, high charge-transfer resistance and inefficient active centers have been recognized as the primary issues for poor electrochemical performance. In this study, for the first time, we offer a novel defect-rich CeO /β-Ni(OH) composite nanosheet-decorated Ni foam electrocatalyst (denoted as Ce@NF-GA), synthesized a unique hydrothermal approach under the co-participation of glycerol and acetic acid.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
A TiO/CdS heterostructure has been widely investigated as a potential photoanode for photoelectrochemical (PEC) water splitting for hydrogen evolution. However, the efficiency and stability still remain challenging due to the sluggish reaction dynamics for water oxidation and easy photocorrosion of CdS. Here we report a ternary TiO/CdS/IrO heterostructure with IrO as a hole transport layer for PEC glycerol oxidation coupled with hydrogen evolution.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Nanjing University of Science and Technology, nanoscience and nanotechnology, Xiaolin wei 200, 210094, Nanjing, CHINA.
Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we present an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Bioengineering Division, Hacettepe University, Ankara 06800, Turkey.
Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate--methacrylic acid) nanoparticles (poly(GDMA--MAA) NPs). Subsequent decoration of CuO NSs with a CaO nanoshell (CuO@CaO NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated HO from the CaO nanoshell significantly enhanced glutathione (GSH) depletion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!