DNA barcoding is critical to conservation and biodiversity research, yet public reference databases are incomplete. Existing barcode databases are biased toward cytochrome oxidase subunit I (COI) and frequently lack associated voucher specimens or geospatial metadata, which can hinder reliable species assignments. The emergence of metabarcoding approaches such as environmental DNA (eDNA) has necessitated multiple marker techniques combined with barcode reference databases backed by voucher specimens. Reference barcodes have traditionally been generated by Sanger sequencing, however sequencing multiple markers is costly for large numbers of specimens, requires multiple separate PCR reactions, and limits resulting sequences to targeted regions. High-throughput sequencing techniques such as genome skimming enable assembly of complete mitogenomes, which contain the most commonly used barcoding loci ( COI, 12S, 16S), as well as nuclear ribosomal repeat regions ( ITS1&2, 18S). We evaluated the feasibility of genome skimming to generate barcode references databases for marine fishes by assembling complete mitogenomes and nuclear ribosomal repeats. We tested genome skimming across a taxonomically diverse selection of 12 marine fish species from the collections of the National Museum of Natural History, Smithsonian Institution. We generated two sequencing libraries per species to test the impact of shearing method (enzymatic or mechanical), extraction method (kit-based or automated), and input DNA concentration. We produced complete mitogenomes for all non-chondrichthyans (11/12 species) and assembled nuclear ribosomal repeats (18S-ITS1-5.8S-ITS2-28S) for all taxa. The quality and completeness of mitogenome assemblies was not impacted by shearing method, extraction method or input DNA concentration. Our results reaffirm that genome skimming is an efficient and (at scale) cost-effective method to generate all mitochondrial and common nuclear DNA barcoding loci for multiple species simultaneously, which has great potential to scale for future projects and facilitate completing barcode reference databases for marine fishes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359134 | PMC |
http://dx.doi.org/10.7717/peerj.13790 | DOI Listing |
Biochem Biophys Res Commun
December 2024
Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan. Electronic address:
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence.
View Article and Find Full Text PDFEcol Evol
December 2024
Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection Anhui Agricultural University Hefei Anhui China.
Previous studies on the gene order and composition of leafhopper mitochondrial genomes have revealed a high level of conservation in overall genome structure. Some members of Deltocephalinae, the largest subfamily, exhibit tRNA gene rearrangements; however, few mitogenomes have been sequenced in this group and the degree of structural variation within tribes remains unclear. In this study, we sequenced the complete mitogenomes of 14 species belonging to four genera of tribe Deltocephalini from China and compared them with the two previously reported mitogenomes for this tribe.
View Article and Find Full Text PDFAm J Hum Genet
December 2024
Division of Evolution, Infection and Genomics, School of Biological Sciences, the University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, the University of Manchester NHS Foundation Trust, Manchester M13 9WL, UK. Electronic address:
The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
One of the greatest scientific achievements of the twenty-first century is the completion of The Human Genome Project (HGP). Thereafter, we came to know that the human genome codes nearly 2% for making proteins and thus named as coding genes, suggesting the rest of the genome as noncoding or junk. However, research in the past two decades has shown and established that noncoding RNAs are major contributors of regulating and modulating the various function of cells as well as tissues.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
(Asteraceae), a new species of , is described and illustrated from Lushan in Sichuan, Southwest China. Its systematic position is evaluated based on a molecular phylogenetic analysis of the nuclear ribosomal and on morphological comparison with related species. It is morphologically similar to and , with purplish red abaxially leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!