Demand for sustainable packaging and building materials has increased the need for biobased additives. Biocomposites can often be exposed to different weather conditions and UV irradiation. Thus, additives to prevent the negative impact of weathering are generally added to composites. This study aims to evaluate using esterified lignin as an additive against weathering effects in polylactic-acid (PLA) composites. Lignin is extracted from construction and demolition waste (CDW) wood using a deep eutectic solvent then esterified and tested as an additive in the fabrication of bio-based composites. For comparison, lignin from birch is used as a raw material for an additive. Esterification is confirmed by solid-state NMR analysis. Samples are exposed to artificial weathering for 700 hours and their impact strength and color change properties are measured. The results indicate that esterified lignin from CDW (CDW e-lignin) as an additive protects the biocomposite from the weathering impact. The sample containing the CDW e-lignin as an additive suffers only a 4.3% of reduction of impact strength, while the samples that contain commercial additives lose clearly more of their impact strength (from 23.1% to 61.1%). Based on the results CDW e-lignin is a good additive to prevent weathering. As a conclusion, the esterified lignin from CDW, is a versatile additive for composite production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360346 | PMC |
http://dx.doi.org/10.1002/gch2.202100137 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.
There is a growing demand for biobased functional materials that can ensure targeted pesticide delivery and minimize active ingredient loss in the agricultural sector. In this work, we demonstrated the use of esterified lignin nanoparticles (ELNPs) as carriers and controlled-release agents of hydrophobic compounds. Curcumin was selected as a hydrophobic model compound and was incorporated during ELNP fabrication with entrapment efficiencies exceeding 95%.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
Int J Biol Macromol
November 2024
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Lignocellulose (LC) is a natural polymer material that holds immense potential for various applications. However, extracting LC from biomass wastes with high-starch content has been challenging due to low selectivity and yield. In this study, LC was prepared from cassava residue (CR) via a combination of mechanical activation pretreatment and a citric acid (CA)-enhanced ternary deep eutectic solvent (TDES) consisting of choline chloride (ChCl), lactic acid (LA), and CA.
View Article and Find Full Text PDFChemSusChem
September 2024
RISE PFIAS, Høgskoleringen 6B, 7034, Trondheim, Norway.
As society is rapidly converting from fossil-based materials to greener alternatives, the valorization of lignin through chemical modification has been given considerable attention. Characterizing this highly heterogeneous biopolymer is a constant challenge, and an emerging strategy for dealing with variations in material characteristics is combining traditional analytical techniques with chemometrics, such as Fourier-transform infrared (FTIR) spectroscopy with partial least squares regression (PLSR). Here, a calibration data set was built based on FTIR spectra and the total carbon-hydrogen bond (CHB) content of mixtures of technical lignins and alkanes, meant to emulate esterified samples.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
"Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Vodă 41 A, 700487 Iași, Romania.
This study focuses on the development of adsorptive materials to retain degraded 5w40 motor oil. The materials were prepared using xanthan (XG) and XG esterified with acrylic acid (XGAC) as the polymeric matrix. LignoBoost lignin (LB), LB esterified with oleic (LBOL), stearic acid (LBST) and montmorillonite (CL) were added into XG and XGAC matrices to obtain the adsorbents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!