A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing a novel computer visualization system to simulate the uranium upward transport mechanism: Uranium pollution in arid landscapes. | LitMetric

Uranium (U) is a naturally occurring, radioactive, toxic trace element that poses severe risks to public and environmental health. Depleted uranium (DU) is widely used in military munitions, including penetrators. Our previous studies showed that in arid landscapes, water-soluble U released from corroded DU penetrators that were buried underground were co-transported upwards with water by evaporation-driven capillary action and eventually precipitated on the ground surface. The first objective of this study was to develop a visualization system to simulate this complex U upward transport mechanism involving cyclic capillary wetting-drying cycles. Multiple visual components such as visual elements, canvases, and animations were created using JavaScript, HTML, and CSS programming languages and coordinated to visualize this biogeochemical process in arid ecosystem landscapes. The second objective was to develop an interactive visualization exercise to allow users to study the effect of the type of capillarity solutions on the speed of the U upward transport. This study is significant in the following aspects:•Contributing a clear and comprehensible visualization of the complex U transport mechanism;•Developing a novel visualization coding framework with more advantages in simulating heavy metal upward transport mechanisms than regular software-based simulations; and•Providing educational uses such as an instructional tool in secondary and college STEM classrooms, an outreach material in promoting student interest in STEM topics and raising public awareness of U pollution, and an educational aid for understanding U mobility in order to develop effective heavy metal pollution control and remediation strategies and policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361324PMC
http://dx.doi.org/10.1016/j.mex.2022.101794DOI Listing

Publication Analysis

Top Keywords

upward transport
16
visualization system
8
system simulate
8
transport mechanism
8
arid landscapes
8
heavy metal
8
visualization
5
transport
5
developing novel
4
novel computer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!