A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system: A validation study. | LitMetric

Background And  aims: Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements.

Methods: 24 healthy participants (9 female, 15 male, age 29 ± 4 years, height 177 ± 11 cm, weight 73 ± 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement).

Results: ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7°-20.3°, bias: 1.2°-50.7°) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1°-23.3°, bias: 1.0°-55.9°). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6°/s-26.7°/s, bias: 10.2°/s-29.9°/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1°/s-34.2°/s, bias: 1.6°/s-27.8°/s) were inconsistent.

Conclusions: The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364332PMC
http://dx.doi.org/10.1002/hsr2.772DOI Listing

Publication Analysis

Top Keywords

sensor-software system
12
angular velocity
12
kinematic parameters
8
clinical practice
8
criterion validity
8
"off-the-shelf" sensor-software
8
range motion
8
peak angular
8
complex shoulder
8
shoulder movements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!