Under the influence of demineralized bone pieces L6 cells differentiate into chondrocytes. The cartilage formed is identifiable histologically. The results demonstrate that these myoblastic cells, which are committed to produce muscle, may still be influenced to express another potentiality of their genome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02126349DOI Listing

Publication Analysis

Top Keywords

myoblastic cells
8
differentiation myoblastic
4
cells chondrocytes
4
chondrocytes influence
4
influence demineralized
4
demineralized bone
4
bone pieces
4
pieces cells
4
cells differentiate
4
differentiate chondrocytes
4

Similar Publications

Norharmane prevents muscle aging via activation of SKN-1/NRF2 stress response pathways.

Redox Biol

January 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea. Electronic address:

Sarcopenia, the age-related decline in muscle mass and function, is a significant contributor to increased frailty and mortality in the elderly. Currently, no FDA-approved treatment exists for sarcopenia. Here, we identified norharmane (NR), a β-carboline alkaloid, as a potential therapeutic agent for mitigating muscle aging.

View Article and Find Full Text PDF

Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations.

Adv Sci (Weinh)

January 2025

LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.

Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.

View Article and Find Full Text PDF

Cost-effective production of meaty aroma from porcine cells for hybrid cultivated meat.

Food Chem

January 2025

Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore. Electronic address:

Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing.

View Article and Find Full Text PDF

MMP2 regulates proliferation and differentiation in chicken primary myoblasts, and RNA-seq screens for key genes.

Gene

January 2025

Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang 330032 China. Electronic address:

The growth and development of chicken skeletal muscle directly affects chicken meat production, which is very important for broiler industry. Matrix metallopeptidase 2 (MMP2) exists in skeletal muscle. However, the underlying regulating of MMP2 remain unknown.

View Article and Find Full Text PDF

Leaf Extract Protects C2C12 Mouse Myoblasts Against the Suppressive Effects of Bisphenol-A on Myogenic Differentiation.

Int J Mol Sci

January 2025

Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!